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14. Obtencion de las Tensiones.

En esta seccidén se plantean y contestan las siguientes preguntas relacionadas con el
CALCULO DE LAS TENSIONES: (1) ¢Por qué calcular las tensiones?; (2) ¢Qué nombre reciben
las técnicas que se wutilizan?; (3) ¢Cémo calcular 1las tensiones a partir de los
desplazamientos?; (4) ¢En qué puntos se deben calcular las tensiones y que sucede con
ellas?; (5) ¢Como calcular las tensiones en los nodos?; y (6) ¢Cudl de las dos técnicas
disponibles es mas conveniente y en qué tipos de elementos?. Seguidamente se comenta la
técnica de extrapolacidon desde los puntos de Gauss sobre el elemento cuadrilatero de 4
nodos y sobre elementos de orden superior. Por ultimo se indica en que consiste el
promediado entre elementos.

El desarrollo de estos contenidos figura perfectamente explicado en el Tema 29 del Curso
Introductorio al Método de 1los Elementos Finitos que se cursa en la Universidad de
Colorado en Boulder, bajo la direccidén del Prof. Carlos A. Felippa, y por ello 1lo
proporcionamos completo en esta seccion.

CHAPTER 29. Calculo de las Tensiones y lLas Deformaciones.
Carlos A. Felippa.
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283 §28.2 CALCULATION OF ELEMENT STRAINS AND STRESSES

§28.1. Introduction

In this lecture we study the recovery of stress values for two-dimensional plane-stress elements.!

This analysis step 1s sometimes called postprocessing because it happens after the main processing
step — the calculation of nodal displacements — 1s completed. Stress calculations are of interest
because 1n structural analysis and design the stresses are often more important to the engineer than
displacements.

In the stiftfness method of solution discussed in this course, the stresses are obtained from the
computed displacements, and are thus derived quantities. The accuracy of derived quantities 1s
generally lower than that of prnimary quantities (the displacements), an informal statement that may
be mathematically justified in the theory of finite element methods. For example, if the accuracy
level of displacements 1s 1% that of the stresses may be typically 10% to 20%, and even lower at
boundaries.

It 1s therefore of interest to develop techniques that enhance the accuracy of the computed stresses.
The goal 1s to “squeeze” as much accuracy from the computed displacements while keeping the
computational effort reasonable. These procedures receive the generic name stress recovery tech-
nigues in the finite element literature. In the following sections we cover the simplest stress recovery
techniques that have been found most useful in practice.

§28.2. Calculation of Element Strains and Stresses

In elastic materials, stresses o are directly related to strains e at each point through the elastic
constitutive equations o = Ee. It follows that the stress computation procedure begins with strain
computations, and that the accuracy of stresses depends on that of strains. Strains, however, are
seldom saved or printed.

In the following we focus our attention on two-dimensional isoparametric elements, as the compu-
tation of strains, stresses and axial forces in bar elements 1s strightforward.

Suppose that we have solved the master stifftness equations
Ku =f, (28.1)

for the node displacements u. To calculate strains and stresses we perform a loop over all defined
elements. Let e be the element index of a specific two-dimensional 1soparametric element encoun-
tered during this loop, and u®’ the vector of computed element node displacements. Recall from
§13.3 that the strains at any point in the element may be related to these displacements as

e = Bu'?, (28.2)

where B 1s the strain-displacement matrix (14.18) assembled with the x and y denvatives of the
element shape functions evaluated at the point where we are calculating strains. The corresponding
stresses are given by

o = Ee = EBu (28.3)

' This Chapter needs rewriting to show the use of Mathematica for stress computation. To be done in the future.
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Table 28.1 Natural Coordinates of Bilinear Quadrilateral Nodes

Corner & n &' n Gauss & n g
node node
1 =] = =B =43 IE —1//3 —1/3 =1 =i
2 +1 =1 +43 =3 2 +1/4/3 =1/4/3 +1 -1
3 +1 +1 443 +43 3 +1/v/3 +1/4/3 +1 +1
4 —1 41 =3 +43 4 —1i3 413 —1 1
Gauss nodes, and coordinates £’ and ' are defined in §28.4 and Fig. 28.1

In the applications it 1s of interest to evaluate and report these stresses at the element nodal points
located on the corners and possibly midpoints of the element. These are called element nodal point
Stresses.

It 1s important to realize that the stresses computed at the same nodal point from adjacent elements
will not generally be the same, since stresses are not required to be continuous 1n displacement-
assumed finite elements. This suggests some form of stress averaging can be used to improve the
stress accuracy, and indeed this is part of the stress recovery technique further discussed in §28.5.
The results from this averaging procedure are called nodal point stresses.

For the moment let us see how we can proceed to compute element nodal stresses. Two approaches
are followed in practice:

1. Evaluate directly & at the element node locations by substituting the natural coordinates of
the nodal points as arguments to the shape function modules. These modules return q,, and q,
and direct application of (28.2)-(28.4) vields the strains and stresses at the nodes.

2. Evaluate o at the Gauss integration points used in the element stiffness integration rule and
then extrapolate to the element node points.

Empirical evidence indicates that the second approach generally delivers better stress values for
quadrilateral elements whose geometry departs substantially from the rectangular shape. This is
backed up by “superconvergence” results in finite element approximation theory. For rectangular
elements there is no difference.

For 1soparametric triangles both techniques deliver similar results (1dentical if the elements are
straight sided with midside nodes at midpoints) and so the advantages of the second one are
marginal. Both approaches are covered in the sequel.

§28.3. Direct Stress Evaluation at Nodes

This approach is straightforward and need not be discussed in detail.

284
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28-5 §28.4 EXTRAPOLATION FROM GAUSS POINTS

2

Figure 28.1. Extrapolation from 4-node quad Gauss points: (a) 2 x 2 rule, (b) Gauss element (¢’)

§28.4. Extrapolation from Gauss Points

This will again be explained for the four-node bilinear quadnlateral. The normal Gauss integration
rule for element stiftness evaluation i1s 2 x 2, as illustrated in Figure 28.1.

The stresses are calculated at the Gauss points, which are identified as 1’, 2/, 3" and 4’ in Figure 28.1.
Point i’ 1s closest to node i so it 1s seen that Gauss point numbering essentially follows element
node numbering in the counterclockwise sense. The natural coordinates of these points are listed
in Table 28.1. The stresses are evaluated at these Gauss points by passing these natural coordinates
to the shape function subroutine. Then each stress component 1s “carried” to the corner nodes 1
through 4 through a bilinear extrapolation based on the computed values at 1" through 4'.

To understand the extrapolation procedure more clearly it 1s convenient to consider the region
bounded by the Gauss points as an “internal element” or “Gauss element”. This interpretation is
depicted in Figure 28.1(b). The Gauss element, denoted by (&'), is also a four-node quadrilateral.
Its quadrilateral (natural) coordinates are denoted by £ and »’. These are linked to £ and 5 by the
simple relations

E=E/V3, n=1/V3, & =£J3, 1y =nv3 (28.4)

Any scalar quantity w whose values w’ at the Gauss element corners are known can be interpolated
through the usual bilinear shape functions now expressed in terms of & and '

w(& n) =[w, wy, wy wy] L (28.5)

where (ct. §15.6.2)
N = La-g)a -,
N =L +eHa - 1),
=11+&A+n),
N =10 -£YA + ).

(28.6)
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Figure 28.2. Gauss elements for higher order quadrilaterals and triangles:
(a) 9-node element with 3 x 3 Gauss rule, (b) 8-node element with
3 x 3 Gauss rule, (c) 6-node element with 3-interior point rule.

To extrapolate w to corner 1. say, we replace its & and 5’ coordinates, namely & = 5 = —/3,
into the above formula. Doing that for the four corners we obtain
I 1 1 1
wmp (133 3 13 o
wy | _ —3 1+ gx/g —3 l. — 5\/§ W, (28.7)
w3 - 1V3 —1 1 +143 —3 w)
Wi -1 1-i3 -1 1+i3] Lt

Note that the sum of the coeflicients in each row 1s one, as it should be. For stresses we apply this
formula taking w to be each of the three stress components, o, oy, and 7,,, in turn.

Extrapolation in Higher Order Elements

For eight-node and nine-node isoparametric quadrilaterals the usual Gauss integration rule is 3 x 3,
and the Gauss elements are nine-noded quadrilaterals that look as in Figure 28.2(a) and (b) above.
For six-node triangles the usual quadrature is the 3-point rule with internal sampling points, and
the Gauss element 1s a three-node triangle as shown in Figure 28.2(c).

§28.5. Interelement Averaging

The stresses computed in element-by-element fashion as discussed above, whether by direct evalu-
ation at the nodes or by extrapolation, will generally exhibit jumps between elements. For printing
and plotting purposes it is usually convenient to “smooth out” those jumps by computing averaged
nodal stresses. This averaging may be done in two ways:

(I) Unweighted averaging: assign same weight to all elements that meet at a node;

(II) Weighted averaging: the weight assigned to element contributions depends on the stress
component and the element geometry and possibly the element type.

Several weighted average schemes have been proposed in the finite element literature, but they do
require additional programming.
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