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9. Criterios de Convergencia.

La leccidén comienza con una explicacion sobre los términos “convergencia®, “consistencia”,
“estabilidad” y “indice variacional”. Este ultimo resulta fundamental para verificar 1la
convergencia. Se define a continuacion 1o que se denomina “patch" de elementos.
Seguidamente se explica desde un punto de vista practico el 12 y 22 prequerimientos
fundamentales a cumplir por las funciones de forma, expresados en funcidén del “indice
variacional”. Para pasar a continuacién a comentar: (1) el 192 requerimiento a cumplir por
la matriz de rigidez del elemento para asegurar la “estabilidad”, lo que se denomina
“suficiencia de rango”; y (2) el 22 requerimiento a cumplir por la geometria del elemento
para asegurar la “estabilidad”, lo que se denomina “Jacobiano positivo”. Seguidamente se
explica a que equivale este ultimo requerimiento en el triangulo de 3 nodos, en el
cuadrilatero de 4 nodos, en el cuadrilatero de 9 nodos, y en el triangulo de 6 nodos,
indicandose las formas geométricas de estos elementos que deban evitarse para asegurar
aquella condicidn.

El contenido figura perfectamente explicado en el Tema 19 del Curso Introductorio al
Método de los Elementos Finitos que se cursa en la Universidad de Colorado en Boulder,
bajo la direccidén del Prof. Carlos A. Felippa, y por ello lo proporcionamos completo en
esta secciodn.

CHAPTER 19. Criterios de Convergencia.
Carlos A. Felippa.
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§19.1. OVERVIEW

Chapters 12 through 18 have listed, in piecemeal fashion, various requirements for shape functions
of 1soparametric elements. These requirements are motivated by convergence: as the finite element
mesh is refined, the solution should approach the analytical solution of the mathematical model.!
This attribute is obviously necessary to instill confidence in FEM results from the standpoint of
mathematics.

This Chapter provides unified information on convergence requirements. These requirements can
be grouped into three:

Completeness. The elements must have enough approximation power to capture the analytical
solution in the limit of a mesh refinement process. This intuitive statement is rendered more precise
below.

Compatibility. The shape functions must provide displacement continuity between elements.
Physically these insure that no material gaps appear as the elements deform. As the meshis refined,
such gaps would multiply and may absorb or release spurious energy.

Stability. The system of finite element equations must satify certain well posedness conditions that
preclude nonphysical zero-energy modes in elements, as well as the absence of excessive element
distortion.

Completeness and compatibility are two aspects of the so-called consistency condition between
the discrete and mathematical models. A finite element model that passes both completeness
and continuity requirements is called consistent. The famous Lax-Wendroff theorem? says that
consistency and stability imply convergence.

A deeper mathematical analysis done in more advanced courses shows that completeness is nec-
essary for convergence whereas failure of the other requirements does not necessarily precludes
it. Nonetheless, the satisfaction of the three criteria guarantees convergence and may therefore be
regarded as a safe choice.

§19.2. THE VARIATIONAL INDEX

For the mathematical statement of the completeness and continuity conditions, the variational index
alluded to in previous sections plays a fundamental role.

The FEM 1s based on the direct discretization of an energy functional [1[# ], where # (displacements
for the elements considered in this book) 1s the primary variable, or (equivalently) the function to
be varied. Let m be the highest spatial derivative order of # that appears in [1. This # is called the
variational index.

EXAMPLE 19.1
In the bar problem discussed m Chapter 12,

I
IT[#] :[ (%u’rEAu"—qu) dx. (19.1)
0

1 Of course FEM convergence does not guarantee the correctness of the mathematical model in capturing the physics. As
discussed in Chapter 1, thatis a different and far more difficult problem.

% Proven originally for classical finite difference discretizations.
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The highest derivative of the displacement u(x) is " = du/dx, which is first order in the space coordinate
x. Consequently m = 1. This 1s also the case on the plane stress problem studied in Chapter 14, because the
strains are expressed in terms of first order derivatives of the displacements.

EXAMPLE 19.2
In the plane beam problem discussed in Chapter 13,

L
M[v] :[ (Jv'ETV' — qv) dx. (19:2)
0

The highest derivative of the transverse displacement is the curvature ¥ = v* = d*v/dx?, which is of second
order in the space coordinate x. Consequently m = 2.

§19.3. CONSISTENCY REQUIREMENTS

Using the foregoing definition of variational index, we can proceed to state the two key requirements
for finite element shape functions.

§19.3.1. Completeness

The element shape functions must represent exactly all polynomial terms
of order < m in the Cartesian coordinates. A set of shape functions that
satisfies this condition 1s called m-complete.

Note that this requirement applies at the element level and involves all shape functions of the
element.

EXAMPLE 19.3

Suppose a displacement-based element 1s for a plane stress problem, in which 2 = 1. Then 1-completeness
requires that the linear displacement field

U, = oo+ o x + oy, Uy, = tg + 01X + 0y (19.3)

be exactly represented for any value of the « coefficients. This 1s done by evaluating (19.3) at the nodes to
form a displacement vector u® and then checking that u = N u'® recovers exactly (19.3). Section 16.6
presents the details of this calculation for an arbitrary isoparametric plane stress element. The analysis shows
that completeness 1s satisfied 1f the swm of the shape functions is unity and the element is compatible.

EXAMPLE 19.4
For the plane beam problem, in which m = 2, the quadratic transverse displacement

V= og + X + opx’ (19.4)

must be exactly represented over the element. Thus 1s easily verified in for the 2-node beam element developed
in Chapter 13, because the assumed transverse displacement is a complete cubic polynomial in x. A complete
cubic contains the quadratic (19.4) as special case.
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() (b)

bars

Figure 19.1. An element patch 1s the set of all elements attached to a patch node, herein
labeled /. (a) illustrates a patch of triangles; (b) a mixture of triangles and
quadrilaterals; {c) a mixture of triangles, quadrilaterals, and bars.

§19.3.2. Compatibility

To state this requirement succintly, it 1s convenient to introduce the concept of element patch, or
simply patch. This is the set of all elements attached to a given node. This node is called the
patch node. The definition is illustrated in Figure 19.1, which shows three different kind of patches
attached to patch node 7 in a plane stress problem. The patch of Figure 19.1(a) contains only
one type of element: 3-node linear triangles. The patch of Figure 19.1(b) mixes two plane stress
clement types: 3-node linear triangles and 4-node bilinear quadrilaterals. The patch of Figure
19.1(c) combines three element types: 3-node linear triangles, 4-node bilinear quadrilaterals, and
2-node bars.

We define a finite element patch trial function as the union of shape functions activated by setting
a degree of freedom at the patch node to unity, while all other freedoms are zero.

A patch trial function “propagates” only over the patch, and is zero beyond it. This property follows
from the local-support requirement stated in §18.1.

With the benelit of these definitions we can enunciate the compatibility requirement as follows.

Patch trial functions must be C ™~ continuous between interconnected
elements, and C™ piecewise differentiable inside each element.

In the common case m = 1, the patch trial functions must be C° continuous between elements, and
C! inside elements.

A set of shape functions that satisfies the first requirement is called conforming. A conforming
expansion that satisfies the second requirement 1s said to be of finite energy. Note that this condition
applies at two levels: individual element, and element patch. An element endowed with conforming
shape functions is said to be conforming. A conforming element that satisfies the finite energy
requirement is said to be compatible.?

3 The FEM literature is fuzzy as regards these terms. It seems better to leave the qualifier “conforming” to denote
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Figures 19.1(b,c) illustrates the fact that one needs to check the possible connection of matching
elements of different types and possibly different dimensionality.

As stated, compatibility refers to the complete finite element mesh because mesh trial functions are
a combination of patch trial functions, which in turn are the union of element shape functions. This
generality poses some logistical difficulties because the condition 1s necessarily mesh dependent.
Compatibility can be checked at the element ievel by restricting attention to matching meshes. A
matching mesh is one in which adjacent elements share sides, nodes and degrees of freedom, as in
the patches shown in Figure 19.1.

For a matching mesh it is sufficient to restrict consideration first to a pair of adjacent elements, and
then to the side shared by these elements. Suppose that the variation of a shape function a/ong
that side 18 controlled by & nodal values. Then a polynomial variation of order up to &k — 1 in the
natural coordinate(s) can be specified uniquely over the side. This 1s sufficient to verify interelement
compatibility for m = 1, implying C° continuity, if the shape functions are polynomials.

This simplified criterion is the one used in previous Chapters. Specific 2D examples were given in
Chapters 15 through 18.

REMARK 19.1

If the variational index 1s 2 = 2 and the problem 1s multidimensional, as in the case of plates and shells, the
check 1s far more involved because continuity of normal derivatives along a side 1s mvolved. This practically
important scenario 1s examined in advanced FEM treatments. The case of non-polynomial shape functions is,
on the other hand, of little practical interest.

§19.4. STABILITY

Stability may be informally characterized as ensuring that the finite element model enjoys the same
solution uniqueness properties of the analytical solution of the mathematical model. For example,
if the only motions that produce zero internal energy in the mathematical model are rigid body
motions, the finite element model must inherit that property. Since FEM can be arbitrary assemblies
of elements, including individual elements, this property is required to hold at the element level.

In the present outline we are concerned with stability at the elementlevel. Stability 1s not a property
of shape functions per se but of the implementation of the element as well as its geometrical
definition. It involves two subordinate requirements: rank sufficiency, and Jacobian positiveness.

§19.4.1. Rank Sufficiency

The element stiffness matrix must not possess any zero-energy kinematic mode other than rigid
body modes.

This can be mathematically expressed as follows. Let ny be the number of element degrees of
freedom, and ny be the number of independent rigid body modes. Let » denote the rank of K®.
The element is called rank sufficient if r = np — ng and rank deficientif r < np — ng. In the latter
case,

d=(np—ng)—r (19.5)

interelement compatibility; informally “an element that gets along with its neighbors.” The qualifier “compatible™ is
used in the stricter sense of conforming while possessing sufficient internal smoothness.
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Table 19.1 Rank-sufficient Gauss Rules for Some Plane Stress Elements

Element n np np—3 Minng Recommendedrule
3-node triangle 3 6 3 1 centroid®
6-node triangle 6 12 9 3 3-point rules*
10-node triangle 10 20 17 6 6-point rule®
4-node quadrilateral 4 8 5 2 2x2
8-node quadrilateral g8 16 13 5 3x3
9-node quadrilateral 9 18 15 5 3 x3
16-node quadrilateral 16 32 29 10 4x4

* These triangle integration rules are introduced in §24.2.

1s called the rank deficiency.

If an isoparametric element 1s numerically integrated, let #; be the number of Gauss points, while

ng denotes the order of the stress-strain matrix E. Two additional assumptions are made:

(1) The element shape functions satisfy completeness in the sense that the rigid body modes are
exactly captured by them.

(11) Matrix E 1s of full rank.

Then each Gauss point adds 7y to the rank of K®, up to a maximum of ny — n . Hence the rank

of K will be
r=min(npg — ng,ngng) (19.6)

To attain rank sufficiency, ngng must equal or exceed np — ng:

HEHg = N — NR (197)

from which the appropriate Gauss integration rule can be selected.

In the plane stress problem, ny = 3 because E 1s a 3 x 3 matrix of elastic moduli; see Chapter 14.
Also ng = 3. Consequently » = min(ny — 3, 3ng) and 3ng > np — 3.

EXAMPLE 19.5

Consider a plane stress 6-node quadratic triangle. Then #nr = 2 x 6 = 12. To attain the proper rank of
12—np =12 —3 =9, ns = 3. A 3-point Gauss rule, such as the midpoint rule defined in §24.2, makes the
element rank sufficient.

EXAMPLE 19.6

Consider a plane stress 9-node biquadratic quadrilateral. Then ny = 2 x 9 = 18. To attain the proper rank of
18 —nyg =18 —3 =15, n5 = 5. The 2 x 2 product Gauss rule 1s insufficient because n; = 4. Hence a3 x 3
rule, which yields n; = 9, 1s required to attain rank sufficiency.

Table 19.1 collects rank-sufficient Gauss integration rules for some widely used plane stress elements
with » nodes and 7 = 2# freedoms.

19-7
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Figure 19.2. Effect of displacing node 4 of the four-node bilinear
quadrilateral shown on the leftmost picture, to the right.

§19.4.2. Jacobian Positiveness

The geometry of the element must be such that the determinant J = detJ of the Jacobian matrix
defined? in §17.2, is positive everywhere. As illustrated in Equation (17.20), J characterizes the
local metric of the element natural coordinates.

\

T
ALLIRATANA

5

Figure 19.3. Effect of moving midpoint 53 of a 9-node biquadratic

quadrilateral tangentially toward corner 2.

4 This definition applies to quadrilateral elements. The Jacobian determinant of an arbitrary triangular element is defined
in §24.2.
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Figure 19.4. Effect of displacing midpoints 4, 5 and 6 of an equilateral 6-node triangle along
the midpoint normals. Motion 1s inwards in first two top frames, outwards in
the last four. In the lower lefimost picture nodes 1 through 6 lie on a circle.

For a three-node triangle J is constant and in fact equal to 2.4. The requirement / > 01s equivalent
to saying that corner nodes must be positioned and numbered so that a positive area 4 > 0 results.
This is called a convexity condition. It is easily checked by a finite element program.

But for 2D elements with more than 3 nodes distortions may render portions of the element metric
negative. This 1s illustrated in Figure 19.2 for a 4-node quadrilateral in which node 4 1s gradually
moved to the right. The quadrilateral morphs from a convex figure into anonconvex one. The center
figure 1s a triangle; note that the metric near node 4 is badly distorted (in fact / = 0 there) rendering
the element unacceptable. This contradicts the (erroncous) advise of some FE books, which state
that quadrilaterals can be reduced to triangles as special cases, thereby rendering triangular elements
unnecessary.

For higher order elements proper location of corner nodes 1s not enough. The non-corner nodes
(midside, interior, etc.) must be placed sufficiently close to their natural locations (midpoints,
centroids, etc.) to avoid violent local distortions. The effect of midpoint motions in quadratic
clements 1s illustrated in Figures 19.3 and 19.4.

Figure 19.3 depicts the effect of moving midside node 5 tangentially in a 9-node quadrilateral
element while keeping all other 8 nodes fixed. When the location of 5 reaches the quarter-point of
side 1-2, the metric at corner 2 becomes singular in the sense that J = 0 there. Although this is
disastrous in ordinary FE work, it has applications in the construction of special “crack™ elements

19-9
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for linear fracture mechanics.

Displacing midside nodes normally to the sides 1s comparatively more forgiving, as illustrated in
Figure 19.4. This depicts a 6-node equilateral triangle in which midside nodes 4, 5 and 6 are
moved inwards and outwards along the normals to the midpoint location. As shown in the lower

left picture, the element may be even morphed into a “parabolic circle” without the metric breaking
down.

Notes and Bibliography

The literature on the mathematics of finite element methods has grown exponentially since the monograph of
Strang and Fix [19.1]. This is very readable but out of print. A more up-to-date exposition is the textbook by
Szabo and Babuska [19.2]. The subjects collected in this Chapter tend to be dispersed in recent monographs.
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Homework Exercises for Chapter 19

FEM Convergence Requirements

EXERCISE 19.1

[D:15] Draw a picture of a 2D non-matching mesh in which element nodes on two sides of a boundary do not
share the same locations. Discuss why enforcing compatibility becomes difficult.

EXERCISE 19.2
[A:25] The 1soparametric definition of the straight 3-node bar element in its local system x 1s

1 O P
|:x:| = |:x1 X2 xg} [Nf)(g)} (E19.1)
v My Uy U3 Nf)(é)

where £ 1s the isoparametric coordinate that takes the values —1, 1 and O at nodes 1, 2 and 3, respectively,
while N, N!” and N{* are the shape functions found in Exercise 16.3.

For simplicity, take x; = 0, x, = L, x3 = %L + «l.. Here L is the bar length and « a parameter that
characterizes how far node 3 i1s away from the midpoint location x = %L. Show that the mmnimum «’s
(minimal in absolute value sense) for which J = dx/d& vanishes at a point in the element are +1/4 (the
quarter-points). Interpret this result as a singularity by showing that the axial strain becomes infinite at a an
end point.

EXERCISE 19.3

[A:15] Consider one dimensional bar-like elements with # nodes and 1 degree of freedom per node so ny = #.
The correct number of rigid body modes 1s 1. Each Gauss integration pomnt adds 1 to the rank; that1s Nz = 1.
By applying (19.7), find the minimal rank-preserving Gauss integration rules with p points in the longitudinal
direction if the number of node points 1s » = 2, 3 or 4.

EXERCISE 19.4

[A:20] Consider three dimensional solid “brick” elements with # nodes and 3 degrees of freedom per node
so ny = 3n. The correct number of rigid body modes 1s 6. Each Gauss mntegration pomnt adds 6 to the rank;
that 1s, Ny = 6. By applying (19.7), find the minimal rank-preserving Gauss integration rules with p points
in each direction (that 1s, 1 X1 x1, 2x2x 2, etc) if the number of node pomnts 1s n = &, 20, 27, or 64,

EXERCISE 19.5

[A/C:35] (Requires use of a CAS help to be tractable). Repeat Exercise 19.2 for a 9-node plane stress element.
The element 1s initially a perfect square, nodes 5,6,7,8 are at the midpoint of the sides, and 9 at the center of
the square. Displace 5 tangentially towards 4 until the jacobian determinant vanishes. This result 1s important
in the construction of “singular elements” for fracture mechanics.

EXERCISE 19.6

[A/C:35] Repeat Exercise 19.5 but moving node 5 along the normal to the side. Discuss the range of motion
for which det J > O within the element.

EXERCISE 19.7

[A:20] A plane stress triangular element has 3 nodes located at the midpoints of the sides. Develop the 3
shape functions and study whether the element satisfies compatibility and completeness.
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