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7. Elementos Cuadrilatero de CUATRO NODOS para el Problema de la Tensidén Plana.

7.1. Cuadrilateros de Cuatro Nodos para Tensidén Plana - Carlos A. Felippa.

En esta seccidén seguiremos observando como funciona el Método desde un punto de vista
matematico, volveremos a ver los elementos indispensables que permiten que los elementos
finitos realicen su trabajo tal y como lo hacen, seguiremos profundizando en el uso del
programa “Mathematica”, pero en esta ocasidon presentaremos un elemento finito regular
tipico, también sencillo, de entre los que permiten abordar el problema de la Tensidn
Plana: el elemento cuadrilatero bilineal de 4 nodos. En el podremos observar las ventajas
de la formulacidén Isoparamétrica, y sobre todo el uso de integracién numérica para la
obtencidon de su matriz de rigidez. Los detalles de su formulacidon esta disponible en el
Tema 17 del Curso Introductorio al Método de los Elementos Finitos que se explica en la
Universidad de Colorado en Boulder, bajo la direccién del Prof. Carlos A. Felippa. De
nuevo no nos conformaremos con la lectura del Tema 17, sino que directamente comenzaremos
a definir en el programa citado aquellos elementos que se presentan en este tema,
utilizandolos para obtener 1la Matriz de Rigidez, pero en esta ocasion wutilizando
integracidén numérica.

Siguiendo con el planteamiento presentado en la leccidn previa, en esta leccidén en primer
lugar se indican los pasos a seguir para poder formular elementos cuadrilateros. Se indica
como calcular las derivadas parciales de las funciones de forma mediante el cdalculo de las
matrices Jacobiana y su inversa. Se indica a continuacién como calcular 1la matriz
deformaciones desplazamientos, que permite calcular las tensiones en cualquier punto del
elemento a partir del vector de los desplazamientos nodales. Debido a que para calcular la
matriz de rigidez de este tipo de elementos es necesario realizar la integral que 1la
define de forma numérica, a continuacidén se presenta las reglas de integracidn numérica de
Gauss. En primer las reglas para problemas unidimensionales, proporcionando un
representacion grafica de las mismas. Se comentan aspectos sobre su utilizacidon que deben
tenerse en cuenta para que todo salga bien. Se proporciona una implementacién de las
mismas en términos de “Mathematica”. Seguidamente se presentan las reglas de Gauss para
problemas bidimensionales, denominadas reglas del producto, por estar basadas en el
producto de las reglas unidimensionales para los dos ejes de coordenadas, proporcionado
una representacion geométrica de las mismas. Se proporciona una implementacidén de las
mismas en términos de “Mathematica”. Con lo anterior se estd en condiciones de comentar
como realizar el calculo de la matriz de rigidez para este tipo de elementos. Se presenta
como realizar este cdlculo y se ofrece una interpretacion geométrica del Determinante de
la Matriz Jacobiana.

CHAPTER 17. Cuadrildteros Isoparamétricos.
Carlos A. Felippa.

Se proporciona un médulo para el cdlculo de matriz de rigidez, otro para el calculo de las
funciones de forma y sus derivadas, otro para las reglas de cuadratura de Gauss en dos
dimensiones, y otro para las reglas de cuadratura de Gauss unidimensionales. Todos ellos
programados en Mathematica. Se procede a realizar una explicacién de cada uno de ellos
haciendo referencia a las férmulas que aparecieron a lo largo de la leccidn. Asi como se
explica el significado de los argumentos de cada médulo. Para terminar, se presenta el
elemento sobre el que se van a plantear los ejercicios de la leccidn.

Se proponen los siguientes ejercicios para ser resueltos sobre el elemento cuadrilatero
presentado, mediante los mdédulos de Mathematica alli comentados. Son los siguientes: (1)
Se trata de calcular la matriz de rigidez, pero utilizando distintos puntos de Gauss para
realizar la integracidén numérica, comprobando los modos de cuerpos rigido mediante el
calculo de los auto valores de la matriz. Y de explicar porque la utilizacidén de una regla
de grado 1 resulta inadecuada; (2) Se trata de comprobar los elementos de matriz de
rigidez cuando por los datos que se consideran estos tienen unos valores simbdélicos dados.
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173 §17.2 PARTIAL DERIVATIVE COMPUTATION

§17.1. INTRODUCTION

In this Chapter the 1soparametric representation of element geometry and shape functions discussed
in the previous Chapter is used to construct guadrilateral elements for the plane stress problem.
The formulas given in Chapter 14 for the stiffness matrix and consistent load vector of general
plane stress elements are of course applicable to these elements. For a practical implementation,
however, we must go through the following steps:

1. Construction of shape functions.
2.  Computations of shape function derivatives to evaluate the strain-displacement matrix.
3. Numerical integration over the element by Gauss quadrature rules.

The first topic was dealt in the previous Chapter in recipe form, and is systematically covered in
the next one. Assuming the shape functions have been constructed (or readily found in the FEM
literature) the second and third items are combined in an algorithm suitable for programming any
isoparametric quadrilateral. The implementation of the algorithm in the form of element modules
is partly explained in the Exercises of this Chapter, and more systematically in Chapter 23.

We shall not cover isoparametric triangles here to keep the exposition focused. Triangular coor-
dinates, being linked by a constraint, require “special handling” techniques that would complicate
and confuse the exposition. Chapter 24 discusses isoparametric triangular elements in detail.

§17.2. PARTIAL DERIVATIVE COMPUTATION

Partial derivatives of shape functions with respect to the Cartesian coordinates x and y are required
for the strain and stress calculations. Since the shape functions are not directly functions of x and y
but of the natural coordinates & and 1, the determination of Cartesian partial derivatives is not trivial.
The derivative calculation procedure is presented below for the case of an arbitrary isoparametric
quadrilateral element with » nodes.

§17.2.1. The Jacobian

In element derivations we will need the Jacobian of two-dimensional transformations that connect
the differentials of {x, y} to those of {£, n} and vice-versa:

ox ox % o

dx]_ | o€ oy |[d&] _ jr[dt ds| _| ox ax |[dx]_ j-r[dx

dy |~ | dy oy |ldn]|~ " |dn]’ |dn] |9 9 ||dy]|" dy |’
3 an ox 3y

(17.1)
Here J denotes the Jacobian matrix of {(x, y) with respect to (&, ), whereas J ~! is the Jacobian
matrix of (&, n) with respect to (x, y):

ox oy ot o
J = B(x,y) _ a& a?;: . |:J11 J]Q] J_l _ 8(5? ??) — a ax
A&, n) ax dy Jo1 J2 |’ a(x, y) 9§ an

an  In dy ay

(17.2)

In finite element work J and J~' are often called the Jacobian and inverse Jacobian, respectively;
the fact that it is a matrix being understood. The scalar symbol J means the determinant of
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J: J = |J] = detJ. In one dimension J and J coalesce. Jacobians play a crucial role in
differential geometry. For the general definition of Jacobian matrix of a differential transformation,
see Appendix D.

REMARK 17.1

Note that the matrices relating the differentials in (17.1) are the transposes of J and J . The reason is that
differentials transform as covariant quantities as per the chain rule: dx = (0x/9&) d& + (0x/0n) dn, ctc. But
Jacobians have traditionally been arranged as in (17.2) because of earlier use in contravariant transformations:

dp/0E = (3/0x)(9x/E) + (9/0y)(dy/E), as in (17.5) below.

REMARK 17.2
To show that J and J~' are in fact inverses of each other we form their product:
0x0E  gxdn OvOE  dvdn- rox Oy
Jy — 06 dx  dpdx 0950x  dpox | | 9x Ox _[l O} (17.3)
| axdt  oxon ayoe ooy || ax v |~ lo 1l -
0 0y ' Ondy O0F dy ' 0n oy dy 9y

where we have taken into account that x = x (&, n), v = y(§, n) and the fact that x and y are independent
coordinates. This proof would collapse, however, if instead of {&, n) we had the triangular coordinates
181, &2, &3} because rectangular matrices have no conventional inverses. This case requires special handling
and 1s covered in Chapter 24.

§17.2.2. Shape Function Derivatives

The shape functions of a quadrilateral element are expressed in terms of the quadrilateral coordinates
& and n introduced in §16.7. The derivatives with respect to x and y are given by the chain rule:

NS AN 9t AN an

ax  0Of T " an ax (17.4)
aN© N9t AN By '
dy 3E 9y an Iy’
In matrix form:
LA 3 onp [ONY ] - AN ] T AN T
ax | _ | ox ox o | _ o6& | ot _g1| 9 (17.5)
N, 9 o || oN®@ | T a(x,3) | aN® aN© | |
Loy 9y 9y L7 L o - L "o A

where J! is defined in (17.2). The computation of J is addressed in the next subsection.

§17.2.3. Computing the Jacobian Matrix

To compute the entries of J at any quadrilateral location we make use of the last two geometric
relations 1n (16.4), which are repeated here for convenience:

n n
x=) wNO o y=D) nN©. (17.6)
=1 i=1
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Differentiating with respect to the quadrilateral coordinates,

0x <~ 9N 3 . 9N®
Dy A
N A A S

(e) (e) (77)
ox “  IN, dy “\ 3N,
] x{. i —_— Zyl
o = 9 o = 9n
because the x; and y; do not depend on & and 5. In matrix form:
T ON 9N INO T [X1 N
T IS
y=px=| % 9 9% D (17.8)
daN," 8N, IN® Do
L 3 an ~  on JdLx, y,d

Given a quadrilateral point of coordinates &, n we can calculate the entries of J using (17.8). The
inverse Jacobian J~! may be obtained by numerically inverting this 2 x 2 matrix.

REMARK 17.3

The symbolic inversion of J for arbitrary &, n in general leads to extremely complicated expressions unless
the element has a particularly simple geometry, (for example rectangles as in Exercises 17.1-17.3). This was
one of the factors that motivated the use of Gaussian numernical quadrature, as discussed below.

§17.2.4. The Strain-Displacement Matrix

The strain-displacement matrix B that appears in the computation of the element stiffness matrix is
given by the general expression (14.18), reproduced here for convenience:

- N ; INY i NG ]
o ox ax Toox
¥ (e) (e) (e)
_ _ IN, IN, N, © _ By©
e = 2eyy = 0 == 0 ... 0 g ut =Bt (179
i IN©® aN® aN® NP  aN© aN®
L Jy ox ay dx 77 dy ox

The entries of the 3 X 3» matrix B are partials of the shape functions with respect to x and y. The
calculation of these entries is done via (17.8) and (17.5).

§17.3. NUMERICAL INTEGRATION BY GAUSS RULES

The use of numerical integration 1s essential for evaluating integrals over isoparametric elements.
The standard practice has been to use Gauss integration' because such rules use a minimal number
of sample points to achieve a desired level of accuracy. This property is important for efficient
element calculations, as we shall see that at each sample point a matrix product is evaluated. The
fact that the location of the sample points in the Gauss rules 1s usually given by non-rational numbers
is of no concern in digital computation.

! See Notes and Bibliography at the end of the Chapter.

17-5
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§17.3.1. One Dimensional Rules

The standard Gauss integration rules in one dimension . p=1
are defined by
| ) ® & p=2
[ FodsxY wre.  ano e p-3
1 e
; 2 & p=4
Here p > 1 is the number of Gauss integration points, ==
w; are the integration weights, and &, are sample-point el g k 2 = e ZI;

abcissae inthe interval [—1,1]. The use of the canonical

interval [—1,1] is no restriction, because an integral Figure17.1. 3113 first ﬁ’ife;n;‘j?ef?mgal Ga‘f

over another range, say from «a to b, can be transformed I 58 = Ly SRR OV LD
) i . ) ine segment £ € [—1, +1]. Sample

to [—1, +1] via a simple linear transformation of the point locations are marked with black

independent variable, as shown in the Remark below. circles. The radii of these circles are

; ; ; roportional to the integration weights.
The first five one-dimensional Gauss rules, illustrated L 8 &

in Figure 17.1, are:

1
One point: F&)dE = 2F(0),

-1

1
Two points: / F(g)dé}‘%F(—l/ﬁ)—i—F(l/ﬁ),
-1
1
Three points: / F(&)dE =~ gF(—,/B/S) + SF(O) + SF(\/S/S),
~1

1
Four points: F(§)dé = wF(§14) + wpaF (§24) + waaF (&34) + waa F (E44),
-1
1

Five points: IF(é’) d& = wisF(&15) + wasF (§25) + wasF (&35) + wasF (§4s5) + wssF(€ss).

(17.11)
For the 4-p0int rule, &34 = —&y = \/(3 —2V6/ W7, 614 = =614 = \/(3 +246/5)/7, wiq =
Wiy = 3 — ¢+/3/6, and wyy = wy = 3 + ¢4/5/6. For the five point rule &s = —&5 =

g\/5+2d/—10/ s = —&s = L5 2,/—10/ F35 = 0, wys = wss = (322 — 13+/70)/900,
Wos = was = (322 + 134/70) /900 and wss = 512/900.

The rules (17.11) integrate exactly polynomials in & of orders up to 1, 3, 5, 7 and 9, respectively.
In general a one-dimensional Gauss rule with p points integrates exactly polynomials of order up
to 2p — 1. This 1s called the degree of the formula.

REMARK 17.4

A more general integral, suchas ¥ (x) over|[a, b]inwhich{ = b—a > 0, istransformed to the canonical interval
[—1, 1] through the the mapping x = 1a(1 — &)+ 36(1+§) = 2(a+b) + 34L&, 01§ = (2/0)(x — 2 (a+b)).
The Jacobian of this mapping is J = dx/dé = %E. Thus

b 1 1
/ F(x) dx :/ F(s})de;:f F(g) Leds. (17.12)

1 -1
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REMARK 17.5

Higher order Gauss rules are tabulated in standard manuals for numerical computation. For example, the
widely used Handbook of Mathematical Functions [17.1] tabulates (in Table 25.4) rules with up to 96 points.
For p > 6 the abscissas and weights of sample points are not expressible as rational numbers or radicals, and
can only be given as floating-point numbers.

§17.3.2. Mathematica Implementation of 1D Rules

The following Mathematica module returns exact or floating-point information for the first five
unidimensional Gauss rules:

LineGaussRuleInfo[{rule_,numer_},point_]:= Modulel[
{g2={-1,1}/Sqrt [3],w3={5/9,8/9,5/9},
g3={-Sqrt[3/5],0,Sqrt [3/5]},
wd={(1/2)-Sqrt[5/61/6, (1/2)+Sqrt[5/6]/6,
(1/2)+Sqgrt[5/61/6, (1/2)-Sqrt([5/6]1/6%},
gd4={-Sqrt [(3+2*Sqrt [6/5])/7],-Sqrt [(3-2*Sqrt[6/5]) /7],
Sqrt [(3-2%Sqrt[6/5]1)/7], Sqrt[(3+2+Sqrt[6/5]1)/71},
gb={-Sqrt [6+2*Sqrt [10/7]],-Sqrt [6-2*Sqrt[10/7]],0,
Sqrt [6-2*Sqrt [10/7]1], Sqrt[5+2%Sqrt[10/7]1]11}/3,
wb={322-13%Sqrt [70], 322+13%Sqrt [70],512,
322+13%Sqrt [70] , 322-13%Sqrt [70]}/900,
i=point,p=rule,info={Null,0}},
If [p==1, info={0,2}];
If [p==2, info={g2[[il]l,1}];
If [p==3, info={g3[[il],w3[[i]1]13}];
If [p==4, info={g4[[il],w4[[i]1]3}];
If [p==5, info={gb[[i]l]l,wB[[i]11}];
If [numer, Return([N[info]], Return[Simplify[infol]l];
1;
To get information for the il point of the p”‘ rule, inwhich 1 <i < pand p =1, 2, 3, 4, 5, call the
module as { xi,wi }=LineGaussRuleInfo[{p,numer},i]. Logical flagnumer is True to getnu-
merical (floating-point) information, or False to get exact information. The module returns the sam-
ple point abeissa&; in xi and the weight w; in wi. Example: LineGaussRuleInfo[{3,False}, 2]
returns { 0,8/9}. If p 1s not in range 1 through 5, the module returns { Null, 0}.

§17.3.3. Two Dimensional Rules

The simplest two-dimensional Gauss rules are called prodiict rules. They are obtained by applying
the one-dimensional rules to each independent variable in turn. To apply these rules we must first
reduce the integrand to the canonical form:

1 1 1 1
flle(s,n)ds = fldnle(s,ans. (17.13)

Once this 1s done we can process numerically each integral in turn:

1 1 1 1 L P22
[ [ renasan=[ anf Femasnyd wwFEn). a1

i=1 j=1

17-7
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Figure 17.2. The first four two-dimensional Gauss product rules p = 1, 2, 3, 4 depicted
over a straight-sided quadrilateral region. Sample points are marked with black
circles. The areas of these circles are proportional to the integration weights.

where p, and p, are the number of Gauss points in the & and n directions, respectively. Usually
the same number p = p; = p, is chosen if the shape functions are taken to be the same in the &
and 7 directions. This 1s in fact the case for all quadrilateral elements presented here. The first four
two-dimensional Gauss product rules with p = p; = p, are illustrated in Figure 17.2.

§17.3.4. Mathematica Implementation of 2D Gauss Rules

The following Mathematica module implements the two-dimensional product Gauss rules with 1
through 5 points in each direction. The number of points in each direction may be the same or
different.

QuadGaussRuleInfo [{rule_,numer_},point_] := Module|[
{xi,eta,pl,p2;il,i2svwl w2 k anfo={{Null . Null}. O},
If [Length[rule] ==2, {pl,p2}=rule, pl=p2=rule];
If [Length[point]==2, {il,i2}=point,
k=point; i2=Floor[(k-1)/pll+l; il=k-pl*(i2-1) ];
{xi, wl}= LineGaussRuleInfo[{pl,numer},il];
{eta,w2}= LineGaussRuleInfo[{p2,numer},i2];
info={{xi,etal},wl*w2};
If [numer, Return[N[info]], Return[Simplify[infolll];
15
If the rule has the same number of points p 1n both directions the module 1s called in either of two
ways:

{{xii,etaj},wij}=QuadGaussRuleInfo[{p,numer}, {i,j}]

{{xii,etaj},wij}=QuadGaussRuleInfo [{p,numer}, k ] (17.15)

The first form 1s used to get information for point {7, j} of the p X prule, in which1 <7 < p and

17-8
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1 < j < p. The second form specifies that point by a “visiting counter” £ that runs from 1 through
p?, ifso {i, j} are internally extracted® as j=Floor [(k-1) /p]+1; i=k-p*(j-1).

If the integration rule has p; points in the & direction and p, points in the n direction, the module
may be called also in two ways:

{{xii,etaj},wij }=QuadGaussRuleInfo[{{pl,p2},numer}, {i,j}]

{{xii,etaj},wij}=QuadGaussRuleInfo[{{pl,p2},numer}, k ] 716

The meaning of the second argument is as follows. Inthe first form7 runs from 1to p; and ; from 1to
pa2. Inthe secondform £ runs from 1 to p; po; if'soi and j are extractedby j=Floor [(k-1) /pl]+1;
i=k-pl#(i-1).

In all four forms, logical flag numer is set to True if numerical information is desired andto False
if exact information is desired. The module returns &; and 7; in xii and etaj, respectively, and
the weight product w;w; in wij. This code is used in the Exercises at the end of the chapter. If the
inputs are not in range, the module returns {{ Null,Null},0}.

§17.4. THE STIFFNESS MATRIX

The stiffness matrix of a general plane stress element is given by the expression (14.23), which 1s
reproduced here:

K@:f hBTEBdQ© (17.17)
Qe

Of the terms that appear in (17.17) the strain-displacement matrix B has been discussed previously.
The thickness £, if variable, may be interpolated via the shape functions. The stress-strain matrix E
1s usually constant in elastic problems, but we could in principle interpolate it as appropriate should
it vary over the element.

To apply a Gauss product rule for the numerical integration of this equation we have to reduce it to
the canonical form (17.14), i.e.

1 1
K® :[ f F(&, n) dE dn. (17.18)
—1J-1

If & and 5 are the quadrilateral coordinates, everything in (17.18) fits this form, except the element
of area d2'*). To complete the reduction we need to express 2 in terms of the differentials d&
and dn. The desired relation 1s (see Remark below)

dQ® = dx dy = detd dE dn. (17.19)

We therefore have
F(&,n) = h B'EB detJ. (17.20)

This matrix function can be numerically integrated over the domain —1 < & < 41, -1 <n < +1
by an appropriate Gauss product rule.

2 Indices i and j are denoted by i1 and 12, respectively, inside the module.
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REMARK 17.6 g—;‘dn n
To geometrically justify the arca transformation formula, yA J
consider the element of area OACB depicted in Figure 17.3. —> g
Then Z
ax 0 d dy 2 dn
S x . 0y x 2
dA = OB x OA = —dt —dn — —dn —dt i [ ___—>§
9E A an ' 0f > x
- 7 b \ ay
=9 | &g — 3| 38 dn = det TdE dn. 7 -
dy 9y =gt §
0§ 97 3§

(17.21) Figure 17.3. Geometric interpretation of the

Jacobian-determinant formula.

§17.5. *EFFICIENT COMPUTATION OF ELEMENT STIFFNESS

This section is relevant only if the stiffness is coded in alow-level language such as Fortran or C. A Mathematica
implementation for the 4-node quadrilateral is introduced in the Exercises and then elaborated in Chapter 23
for more complex elements.

Efficiency considerations in a low-level programming dictate that we take a close look at the matrix products
that appear in (17.20). It is evident from a glance at (17.9) that the strain-displacement matrix B contains
many zero entries. It is therefore of interest to form the matrix product B EB at each of the Gaussian points
while avoiding multiplications by zero. This goal can be achieved as follows. To develop a simple expression
in matrix form, suppose for the moment that the node displacement vector u® is arranged as

[P Hop wills, Ba Bu wms Bl 17.22)
If so B can be expressed in partitioned-matrix form
N, 0
B=| 0 N, (17.23)
N, N;

where N; and N, are row vectors of length » that contain the partial derivatives of the shape functions with
respect to x and y, respectively. Then

Elle ‘|’ E13Ny EIZNy + E13Nx S S
EB=| E,N, + ExN, E,N,+ExN, |, B'EB= [S}g Sxy} | 17.24)
EIENX + E33Ny Engy + E33Nx xy R

in which
Sqx = By NIN; + E3(NIN, + N/N,) + Ey;3NIN,

S,y = E;3NIN; + E,NIN, + E;;NON, + E,;NJN, (17.25)
Syy = EyN;N; + Ey (N,{Ny + Nf;Nx) + EzzNj:Ny
In actual implementations the node displacement arrangement (17.22) is not used, but rather the x and y
components are grouped node by node:

[ w1 tsy Uy oo Uy Uy, ) (17.26)

This change is easily implemented through appropriate array indexing.

As noted above, these considerations are important when programming in a low-level language such as C
or Fortran. It should be avoided when programming in AMathematica or Matlab because in such high-level
languages explicit indexing of arrays and lists is costly; that overhead in fact overwhelms any advantage gained
from skipping zero operations.
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§17.6. *INTEGRATION VARIANTS

Several deviations from the standard integration schemes described in the foregoing sections are found in the
FEM literature. Two variations are described below and supplemented with motivation Exercises.

§17.6.1. *Weighted Integration

It is sometimes useful to form the element stiffness as a linear combination of stiffnesses produced by two
different integration rules Such schemes are known as weighted integration methods. They are distinguished
from the selective-integration schemes described in the next subsection in that the constitutive properties are
not modified.

For the 4-node bilinear element weighted integration is done by combining the stiffnesses Kﬁzl and Ké‘izz
produced by 11 and 2 x2 Gauss product rules, respectively:

K =(1-pK?, + pKY,. (17.27)

Here § is a scalar in the range [0, 1]. If 8 = 0 or § = 1 one recovers the element integrated by the 1x1 or
22 rule, respectively.®

The idea behind (17.27) is that Kﬁzl is rank-deficient and too soft whereas Kﬁzz is rank-sufficient but too stiff.
A combination of too-soft and too-stiff hopefully “balances” the stiffness. An application of this idea to the
mitigation of shear locking for modeling in-plane bending is the subject of Exercise E17.4.

§17.6.2. *Selective Integration

In the FEM literature the term selective integration is used to described a scheme for forming K© as the sum
of two or more matrices computed with different integration rules and different constitutive properties.* We
consider here the case of a two-way decomposition. Split the plane stress constitutive matrix E into two:

E=FE +Fy (17.28)

This is called a stress-strain splitting. Inserting (17.28) into (17.17) the expression of the stiffness matrix
becomes

K = f hBTEB Q) + f hB EBdQ® = K& + K. (17.29)
(91 Qe

If these two integrals were done through the same integration rule, the stiffness would be identical to that
obtained by integrating # B' E B d2(). The trick is to use two different rules: rule (I) for the first integral and
rule (II) for the second.

In practice selective integration 1s mostly useful for the 4-node bilinear quadrlateral. For this element rules
(I) and (IT) are the 1:<1 and 2:<2 Gauss product rules, respectively. Exercises E17.5-7 investigate stress-strain
splittings (17.28) that improve the in-plane bending performance of rectangular elements.

3 For programming the combination (17.27) may be regarded as a 5-point integration rule with weights w; = 4(1—8) at
the sample pointat{ = n=0and w;, = g (i = 2, 3, 4, 5) at the four sample points at £ = +1//3, 5 = +1//3.

4 This technique is also called “selective reduced integration™ to reflect the fact that one of the rules (the “reduced rule”)
underintegrates the element.
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Notes and Bibliography

This 4-node quadrilateral has a checkered history. It was first derived as a rectangular panel with edge
reinforcements (not included here) by Argyris in his 1954 Aircraft Engineering series [17.2, p. 49 in the
Butterworths reprint]. Argyris used bilinear displacement interpolation in Cartesian coordinates.

After much flailing, a conforming generalization to arbitrary geometry was published in 1964 by Taig and
Kerr [17.9] using quadrilateral-fitted coordinates called (£, »} but runnming from O to 1. (Reference [17.9] cites
an 1961 English Electric Aircraft internal report as original source but [17.8, p. 520] remarks that the work
goes back to 1957.) Bruce Irons, who was aware of Taig’s work while at Rolls Royce, created the seminal
1soparametric family as a far-reaching extension upon moving to Swansea [17.3,17.4,17.6-17.8].

Gauss integration is also called Gauss-Legendre quadrature. Gauss presented these rules, derived from first
principles, in 1814. See Sec 4.11 of [17.5]. The name of Legendre is often adjoined because the abcissas of
the one-dimensional sample points turned later to be the zeros of Legendre polynomials.
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Homework Exercises for Chapter 17

Isoparametric Quadrilaterals

The Mathematica module Quad4IsoPMembraneStiffness in Figure E17.1 computes the element stiffness
matrix of the 4-node bilinear quadrilateral. This module is useful as a tool for the Exercises that follow.

Quad4IsoPMembraneStiffness [ncoor ,mprop ,fprop ,options ]:=
Module[{i,k,p=2,numer=False,Emat, th=1,h, gcoor,c,w,NE,
dNx,dNy, Jdet,B,Ke=Table[0,{8},{8}1}, Emat=mpropl[1l]];
If [Lengthl[optionsl==2, {numer,p}=options, {numer}=optionsl];
If [Length[fpropl>0, th=fpropll[1l]l]1];
If [p<l||p>4, Print["p out of range"];Return[Nulll];
For [k=1l, k<=p*p, k++,
{geoor,w}= QuadGaussRuleInfo[{p,numer}, k];
{Nf,dNx, dNy, Jdet }=Quad4IsoPShapeFunDer [ncoor, gcoor] ;
TE [Length[th]== z h=th, h=th.Nf]; c=w*Jdet*h;
B={ Flatten[Table[{dNx[[il], 0},{i,4}11,
Flatten[Table[{0, anNy [[i11},{4i,4}11,
Flatten [Table [{ANy [[i]],dNx[[i]11},{i,4}11};
Ke+=Simplify[c*Transpose[B] . (Emat.B)];
1; Return[Kel
1;

Quad4IsoPShapeFunDer [ncoor ,gcoor ]:= Modulel
{N£f,dNx, dNy, dNE ,dNn,i,J11,J12,J321,J22,Jdet,§,n,x1,x2,x3, x4,
Y1'Y2’Y31Y4!xly}l

{&,n}=qgeoor; {{x1,yl},{x2,y2},{x3,y3},{x4,y4}}=ncoor;
NE={ (1-E) * (1-m) , (L+&) *(1L-1) , (1+&) * (1+m) , (1-E) * (1+m) }/4;
ang ={-(1-m), (1-m), (1+1m),-(1+n) }/4;
dnn= {-(1-&),-(1+&), (1+&), (1-&)}/4;
x={x1,x2,x3,x4}; y={yl,y2,y3,y4};
J11=dN§.x; le:ng.y; J21=th.x; J22=dNn.Y;
Jdet=Simplify [J11*J22-J12*J21];
dNx= ( J22*dNE-J12*dNn) /Jdet; dNx=Simplify [dNx];
dNy= (-J21*dNE+J11*dNn) /Jdet; dNy=Simplify [dNy];
Return [{Nf, dNx,dNy, Jdet}]

1;

Figure E17.1. Mathematica modules for Exercises 17.1-3.

The module makes use also of the Gauss integration modules QuadGaussRuleInfo and LineGaussRuleInfo.
These are not shown in Figure E17.1 since they were listed in §17.3.2 and §17.3.4, but are included in the
web-posted Notebook Quad4Stiffness.nb.’ The arguments of the module are:

ncoor Quadrilateral node coordinates arranged in two-dimensional list form:
({x1,y1},(x2,y2),(x3,y3},{x4,y4} }.
mprop Material properties supplied as the list { Emat, rho,alpha }. Emat is a two-dimensional
list storing the 3 < 3 plane stress matrix of elastic moduli:
Ey Ey Ey
E=|E, E, E,; (E17.1)
By By Eg

3 This Notebook does not include scripts for doing the Exercises below, although it has some text statements at the bottom
of the cell. You will need to enter the exercise scripts yourself.
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If the matenial is isotropic with elastic modulus £ and Poisson’s ratio v, this matrix

becomes
1 v 0

v o1 0 (E17.2)
1 —v?
0 0 3(1—w

2
E=

The other two items in mprop are not used in this module so zeros may be inserted as
placeholders.

fprop Fabrication properties. The plate thickness specified as a four-entry list: { h1,h2,h3,h4 },
a one-entry list: { h}, or an empty list: { }.

The first form 1s used to specify an element of variable thickness, in which case the
entries are the four corner thicknesses and /4 1s interpolated bilinearly. The second form
specifies uniform thickness h. If an empty list appears the module assumes a uniform
unit thickness.

options Processing options. This list may contain two items: { numer,p} or one: { numer }.

numer is a logical flag with value True or False. If True, the computations are forced
to proceed in floating point arithmetic. For symbolic or exact arithmetic work set numer
to False.®

p specifies the Gauss product rule to have p points in each direction. p may be 1 through
4. For rank sufficiency, p must be 2 or higher. If pis 1 the element will be rank deficient
by two.” If omitted p = 2 is assumed.

The module returns Ke as an 8 x 8 symmetric matrix pertaining to the following arrangement of nodal

displacements:
u® =[ua w1 Uer Uyp Usz Uys Usa Upa ] . (E17.3)
Y T M4 Uniform thickness 4 =1
4 : 3 Isotropic material with elastic
[ o : Q modulus £ and Poisson's ratio v
I
I
|
b= 'Y d —fj=EE==mm B e o ————
i §
| i
I
n ; 7 » X
Ko | O,
- a >

Figure 17.2. Element for Exercises 17.1 to 17.3.

For the following three exercises we consider the specialization of the general 4-node bilinear quadrilateral
(16.12)-(16.13) to a rectangular element dimensioned ¢ and b in the x and y directions, respectively, as
depicted in Figure E17.2. The element has uniform unit thickness /4. The material is isotropic with elastic
modulus £ and Poisson’s ratio v, and consequently E reduces to (E17.2). The stiffness matrix of this element
can be expressed in closed form.* For convenience define y = b/a, ¥ = (1 + v)y, ¥ = (1 — 3v)y,

6 The reason for this option is speed. A symbolic or exact computation can take orders of magnitude more time than a
floating-pomnt evaluation. This becomes more pronounced as elements get more complex.

7 The rank of an element stiffness is discussed in Chapter 19.

§ This closed form can be obtained by either exact integration, or numerical integration with a 2 x 2 or higher Gauss rule.
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Y3 =1—-v+2y% ¢y =24+ A -y s =1—-v—4yi s =1—-v—y% ¢y =4— (1 —v)y* and
g =1 — (1 —v)y2. Then

Sy 3y 2 3 —4s —3vn —20 3y ]
My 3y Ay B 290, 3y 20y
. Sy 3Py —20s —3yn s 3
C) . . Ay =3¢y 24y 3y, —2¢4
= a0 M5 3Yn 295 —3Yn E17.4)
iy 3y difrs
M5 3y
| symm 4y |

EXERCISE 17.1
[C:15] Exercise the Mathematica module of Figure E17.1 with the following script:

ClearAll[Em,nu,a,b,h]; Em=48; h=1; a=4; b=2; nu=0;
ncoor={{0,0},{a,0},{a,b},{0,b}};
Emat=Em/(1-nu~2)*{{1,nu,0},{nu,1,0},{0,0, (1-nu) /2}};
For [p=1, p<=4, p++,
Ke= Quad4IsoPMembraneStiffness[ncoor,{Emat,0,0},{h},{True,p}];
Print["Gauss integration rule: ",p," x ",pl;
Print["Ke=",Chop[Ke] //MatrixForm] ;
Print["Eigenvalues of Ke=", Chop[Eigenvalues[N[Ke]]]]

1;

Verify that for integration rules p= 2, 3,4 the stiffness matrix does not change and has three zero eigenvalues,
which correspond to the three two-dimensional rigid body modes. On the other hand, for p = 1 the stiffness

matrix is different and displays five zero eigenvalues, which is physically incorrect. (This phenomenon is
discussed in detail in Chapter 19.) Question: why does the stiffness matrix stays exactly the same for p = 2?

Hint: take a look at the entries of the integrand #B” EB J — for a rectangular geometry are those polynomials
in £ and 7, or rational functions?

EXERCISE 17.2

[C:20] Check the rectangular element stiffness closed form given in (E17.4). This may be done by hand (takes
a few days) or running the following script that calls the Mathematica module of Figure E17.1:

ClearAll[Em,v,a,b,h]l; b*a;

ncoor={{0,0},{a,0},{a,b}, {0,b}};
Emat=Em/(1-v*2)*{{1,v,0},{v,1,0},{0,0, @-v)/2}};

Ke= Quad4IsoPMembraneStiffness[ncoor, {Emat,0,0},{h}, {False,2}];
scaledKe=Simplify [Ke* (24*y* (1-v"2)/(En*h))1;

Print ["Ke=",Em*h/ (24%* (1-v"2)),"*\n", scaledKe//MatrixForm] ;

Figure E17.3. Script suggested for Exercise E17.2.

The scaling introduced in the 1ast two lines is for matrix visualization convenience. Verify (E17.4) by printout
inspection and report any typos to instructor.
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Figure E17.4. Pure bending of Bernoulli-Euler plane beam of thin rectangular
cross section, for Exercises 17.3—7. The beam is modeled by one
layer of 4-node 1so-P bilinear quadnlaterals through its height.

EXERCISE 17.3

[A/C:25=5+10+10] A Bernoulli-Euler plane beam of thin rectangular cross-section with span L, height 5 and
thickness /# (normal to the plane of the figure) is bent under end moments A4 as illustrated in Figure E17.4.
The beam is fabricated of isotropic material with elastic modulus £ and Poisson’s ratio v. The exact solution
of the beam problem (from both the theory-of-elasticity and beam-theory standpoints) is a constant bending
moment A/ along the span. Consequently the beam deforms with uniform curvature « = A/ /(E1.), in which

L= 1—12]13)3 1s the cross-section second moment of inertia about z.

The beam is modeled with one layer of identical 4-node iso-P bilinear quadrilaterals through its height. These
are rectangles with horizontal dimension a; in the Figure @ — L /4. The aspect ratio 5/a is denoted by y. By
analogy with the exact solution, all rectangles in the finite element model will undergo the same deformation.
We can therefore isolate a typical element as illustrated in Figure E17.4.

The exact displacement field for the beam segment referred to the {x, v} axes placed at the element center as
shown in the bottom of Figure E17.4, are

Uy = —KXY, U, = %K(x2 + vy?), (E17.5)

where « 1s the deformed beam curvature M /E . The stiffness equations of the typical rectangular element
are given by the close form expression (E17.4).

The purpose of this Exercise 1s to compare the in-plane bending response of the 4-node iso-P bilinear rectangle
to that of a Bernoulli-Euler beam element (which would be exact for this configuration). The quadrilateral
element will be called x-bending exact if it reproduces the beam solution for all {y, v}. This comparison is
distributed into three items.

(a) Checkthat (E17.5), as a plane stress 2D elasticity solution, is in full agreement with Bernoulli-Euler beam
theory. This can be done by computing the strains e, = du,/dx, e,, = du,/dy and 2e,, = du,/dx +
du,/dy. Then get the stresses o,,, o, and o, through the plane stress constitutive matrix (E17.2) of
an isotropic material. Verify that both o, and o, vanish for any v, and that o,, = —F«y = —My/L,,
which agrees with equation (13.4) in Chapter 13.
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(b) Compute the strain energy Ugyag = %(ubeam)f K wy.,, absorbed by the 4-node element under nodal
displacements uy,,, constructed by evaluating (E17.5) at the nodes 1,2,3,4. To simplify this calculation,
it 1s convenient to decompose that vector as follows:

Ubeam = Upepy + W = 34ab[—1 010 =1 0 1 0]

(E17.6)
+ik@+vb)[01010101]
Explain why K u, . must vanish and consequently
Ugad = 53 (W) K0 - (E17.7)

This energy can be easily computed by Mathematica by using the first 4 lines of the script of the previous
Exercise, except that here ncoor={{-a,-b},{a,-b},{a,b},{-a,b}}/2. If vector uj, is formed
in u as a one-dimensional list, Uquad=Simplify [u.Ke.u/2]. This should come out as a function of
M, E,v, h,aand y because « = M/(EL,) = 12M/(Eha®y?).

(¢c) From Mechanics of Materials, or equation (13.7) of Chapter 13, the strain energy absorbed by the
beam segment of length @ under a constant bending moment A is U,y = %M ka = M?a/(QEL) =
6M?/(Eha*y?). Form the energy ratio r = Uyyug/ Upeam and show that it is a function of the rectangle
aspect ratio y = b/a and of Poisson’s ratio v only:

2y*(1 —v?)

—_— E17.8
1+2y*—v ( )

F = J“(}/, 1)) —
This happens to be the ratio of the 2D model solution to the exact (beam) solution. Hence » = 1 means
that we get the exact answert, that is the 2D model is x-bending exact. If » < 1 the 2D model is overstiff,
and if » > 1 the 2D model is overflexible. Evidently » < 1 forall y if 0 < v < % Moreover if b << a,
r << 1; for example if ¢ = 10h and v = 0, » =~ 1/50 and the 2D model gives only about 2% of
the correct solution.” Draw conclusions as to the adequacy or inadequacy of the 2D model to capture

inplane bending effects, and comment on how you might improve results by modifying the discretization
of Figure E17.4.1°

EXERCISE 17.4

[A+C:20] A naive remedy to shear locking can be attempted with the weighted integration methodology
outlined in §17.6.1. Let Kﬁzl and K;izz denote the element stiffnesses produced by 11 and 2 x2 Gauss

product rules, respectively. Take
K = (1- K, + BK;., (E17.9)

where 8 1s adjusted so that shear locking 1s reduced or eliminated. It is not difficult to find 8 if the element is
rectangular and isotropic. For the definition of x-bending exact please read the previous Exercise. Inserting
Kf;) into the test introduced there verify that

2y2(1 —v?)
yF = .
B +2y* —v)

(E17.10)

% This phenomenon is referred to in the FEM literature as shear locking, because overstiffness is due to the bending motion
triggering spurious shear energy in the element. Remedies to shear lockmg at the element level are studied in advanced
FEM courses.

10" Note that even if we make a — Oand y = b/a — o0 by taking an infinite number of rectangular elements along x, the
energy ratio » remains less than one if v > Osince » — 1 — v*. Thus the 2D model would not generally converge to the
correct solution 1f we keep one layer through the height.
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Whence show that if
2y2(1 —v?)
b= (E17.11)
1+4+2y2—v

then » = 1 for all {y, v} and the element is x-bending exact. A deficiency of this idea is that it does not
make it y-bending exact because »(y) # r(1/y) if v # 1. Moreover the device is not easily extended to
non-rectangular geometries or non-isotropic material.

EXERCISE 17.5

[A+C:35] (Advanced) To understand this Exercise please begin by reading Exercise 17.3, and the concept
of shear locking. The material is again assumed isotropic with elastic modules £ and Poisson’s ratio v. The
4-node rectangular element will be said to be bending exactif r = 1 for any {y, v} if the bending test described
in Exercise 17.3 is done in both x and y directions. A bending-exact element is completely shear-lock-free.

The selective integration scheme outlined in §17.6.2 1s more effective than weighted integration (covered in
the previous exercise) to fully eliminate shear locking. Let the integration rules (I) and (II) be the 1x<1 and
2 %2 product rules, respectively. However the latter is generalized so the sample points are located at {—x, x},
I, —x ) Dx, x) and {—x, x ), with weight 1.1! Consider the stress-strain splitting

1v 0 a p 0 l—a v—8 0
E E B
E= v 1 0 = g a O + v—B 1-a 0 | =E;+Ey, (E17.12)
1l—=ii2 1—v? 0 o lzv 1=

00 =2 0 0 0

7]
—1/—1”2 E17.13
X = 30— o) (E17.13)

where « and 8 are scalars. Show that if
the resulting element stiffness Kfe) + Kg" ! is bending exact for any {«, 8}. As a corollary show that that if
o = v?, which corresponds to the splitting

g [Lv 0 P v g0 g [1-7* v—8 0
E — 1 0 |= vi 0 —B8 1-v* 0 | =E;+Ey, (E17.14
1—v? Y 1—v 1—v? P 1—v i 1—v? v "’ 1+ B, ( )

OOT 0 0 0

then x = 1/+/3 and rule (I) becomes the standard 2x 2 Gauss product rule. What are two computationally
convenient settings for 8?2

EXERCISE 17.6

[A+C:35] (Advanced) A variation on the previous exercise on selective integration to make the isotropic
rectangular 4-node element bending exact. Integration rule (I) is not changed. However rule (II) has four
sample points located at {0, —x}, {x, 0}, {0, ¥} and [—y, 0} each with weight 1.!*> Show that if one selects

the stress-strain splitting (E17.12) and
2(1 —v?
= =) (E17.15)
3(1 — )

the resulting element stiffness Kfe) - Kl(f) 1s bending exact for any {«, 8}. Discuss which choices of o reduce
x to 1/+/3 and /273, respectively.

11" For a rectangular geometry these sample points lie on the diagonals. In the case of the standard 2-point Gauss product
rule x = 1//3.

12 This is called a 4-point median rule, since the four points are located on the quadrilateral medians.
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EXERCISE 17.7

[A+C:40] (Advanced, research paper level, requires a CAS to be tractable) Extend Exercise 17.5 to consider
the case of general anisotropic material:

Ell EIZ ElS
E=|E, E» Ex (E17.16)
E13 EZS E33

The rules for the selective integration scheme are as described in Exercise 17.5. The appropriate stress-strain
splitting 1s

Eunoy Epp Eis En( —a1) Eip(1-8) 0
1 (E17.17)

E=E+Eg=| Eupf Expoay Ex E1p(1 —B) Ep(l—az) 0
Eyz  Eyp Es 0 0 0

in which 8 is arbitrary and
|E| 1 1 E| 1
= 5 — 0y — — 5
3x2En(EnEs — EZ 3x*Cu ? 3x2En(Enks —ER) 3x%Cxn
|E| = det(E) = E1EynEsz + 2E13E13E23 — EIIE§3 = E22E%3 = EssElzz,
Cin = En(Epkss — Ef3)/|E|, Cyy = Egp(En1E33 — E%3)/|E|'

1—0{1:

(E17.18)
Show that the resulting rectangular element is bending exact for any E and x # 0. (In practice one would

select y = l/x/g.)
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