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6. Representacion ISOPARAMETRICA.

Una vez presentado el elemento triangular lineal de Turner, en el que nos hemos podido
acercar al uso del programa “Mathematica”, y nos hemos dado cuenta que en determinadas
condiciones la matriz de rigidez de este elemento es posible obtenerla de forma explicita,
en la siguiente leccidén del curso que estamos siguiendo se presenta una de las ideas
afortunadas del Método que permite abordar la creacidn de nuevos elementos de una forma
sistematica. Se trata de la representacidén Isoparamétrica. Por ello facilitamos completo
el Tema 16 del Curso Introductorio al Método de los Elementos Finitos que se explica en la
Universidad de Colorado en Boulder, bajo la direccidn del Prof. Carlos A. Felippa.

Comienza 1la leccidon indicando 1las dificultades que existen para extender 1la técnica
presentada para formular el elemento triangular lineal en la leccidén anterior, a otros
elementos. Se presentan 1los conceptos fundamentales que permiten superar estas
dificultades: la representacidn isoparamétrica y la cuadratura numérica. Se presenta en
que consiste el primero de esos conceptos: 1la representacién isoparamétrica de 1los
elementos finitos. Se revisan las ecuaciones que definen el elemento triangular 1lineal y
como realizar una representacidén “superparamétrica” del mismo. Se indica como realizar una
representacion “isoparamétrica” del dicho elemento, extendiéndose esta 1idea para 1la
representacion de cualquier elemento. Una vez conocida la idea que subyace en este tipo de
representaciéon, se procede a extenderla a cualquier elemento bidimensional con n nodos
para el planteamiento del problema de 1la tensidén plana. Se 1indica que es posible
interpolar con esta técnica magnitudes adicionales, distintas de 1las ya conocidas:
desplazamientos, deformaciones y tensiones. Se resume la representacién isoparamétrica del
elemento triangular 1lineal, y se presenta la del elemento triangular cuadratico. Se
definen 1las coordenadas paramétricas que resultan mas utiles para su utilizacidon en
cuadrilateros, presentandose la representacidn paramétrica del cuadrilatero bilineal de 4
nodos, del cuadrilatero bicuadratico de 9 nodos, y la del cuadrilatero “serendipito” de 8
nodos.

CHAPTER 16. Representacion Isoparamétrica.
Carlos A. Felippa.

Se proponen como ejercicios en este capitulo los siguientes: (1) Dar una explicacidén del
sentido fisico que se le puede dar al hecho que las funciones de forma por definicidn
deben sumar uno en cualquier punto del elemento; (2) Comprobar que las funciones de forma
definidas para el tridngulo cuadratico de seis nodos, suman la unidad en cualquier punto
del mismo; (3) A la vista de 1la 1lista incompleta presentada en la 1leccidén para las
funciones de forma del cuadrilatero bicuadratico de nueve nodos, definir el resto de las
funciones de forma, y comprobar que se verifica que la suma de todas ellas es la unidad en
cualquier punto del elemento.
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16-3 §16.2 ISOPARAMETRIC REPRESENTATION

§16.1. Introduction

The procedure used in Chapter 15 to formulate the stiffness equations of the linear triangle can
be formally extended to quadrilateral elements as well as higher order triangles. But one quickly
encounters technical difficulties:

1. The construction of shape functions that satisfy consistency requirements for higher order
elements with curved boundaries becomes increasingly complicated.

2. Integrals that appear in the expressions of the element stiffness matrix and consistent nodal
force vector can no longer be evaluated in simple closed form.

These two obstacles can be overcome through the concepts of isoparametric elements and numerical
quadrature, respectively. The combination of these two ideas transformed the field of finite element
methods in the late 1960s. Together they support a good portion of what is presently used in
production finite element programs.

In the present Chapter the concept of isoparametric representation is introduced for two dimen-
sional elements. This representation is illustrated on specific elements. In the next Chapter these
techniques, combined with numerical integration, are applied to quadrilateral elements.

§16.2. Isoparametric Representation

§16.2.1. Motivation

The linear triangle presented in Chapter 15 is an isoparametric element although was not originally
derived as such. The two key equations are (15.10), which defines the triangle geometry, and
(15.16), which defines the primary variable, in this case the displacement field. These equations
are reproduced here for convenience:

1 1 1 1 e
|:xi| = |:x1 ) x3] [2;2], (16.1)
y yio 2 3 &

€ e e
Uy = U Ny +u Ny +u 3Ny = u 18 + 18y + uy3s,

(16.2)

Uy = ”lef + ”ysz + uysN'f = U 8+ Uyl +usls.
The interpretation of these equations is as follows.
The triangular coordinates define the element geom-
fatry via (16.1). The displacgment exl?ansion'(16.2) Triag_gultar Groneny
is defined by the shape functions, which are in turn C‘%"" énags — 1xy
expressed in terms of the triangular coordinates. For e
the linear triangle, shape functions and triangular
coordinates coalesce.
Thc.ese relations are diagran?med in Figure 16.1. S Disiiecnicn!
Evidently geometry and displacements are not functions > interpolation
treated equally. If we proceed to higher order N Uy, Uy

triangular elements while keeping straight sides,
only the displacement expansion is refined whereas
the geometry definition remains the same.

FIGURE 16.1. Superparametric rep-
resentation of triangular element.

16-3

202



Médulo 6 - Simulacidén Formulacion Implementacion MEF - v.2016.1 - Prof. Dr. José L Oliver

Chapter 16: THE ISOPARAMETRIC REPRESENTATION 164

Geometry

Lx,y
4

Triangular Shape
coordinates # functions

(a

C] » gz’ §3 N.r".)

\ Displacement

interpolation
1!_\- y uy

FIGURE 16.2. Isoparametric representation of triangular elements.

Elements built according to the foregoing prescription are called superparametric, a term that
emphasizes that unequal treatment.

§16.2.2. Equalizing Geometry and Displacements

On first inspection (16.2) and (16.1) do not look alike. Their inherent similarity can be displayed,
however, if the second one is rewritten and adjoined to (16.1) to look as follows:

-1 7 -1 1 | -1 1 I 7
X X1 X2 X3 {1 X X X Ny
yl=1»n » »n Ll=|n »y» ¥ N5 |- (16.3)
Uy Uy Uyp uy3 & Uy Uy uy3 N§

Luy I Luyy uyy ugs Ly Uy wys

This form emphasizes that geometry and displacements are given by the same parametric represen-
tation, as shown in Figure 16.2.

The key idea is to use the shape functions to represent both the element geometry and the problem
unknowns, which in structural mechanics are displacements. Hence the name isoparametric element
(*“iso” means equal), often abbreviated to iso-P element. This property may be generalized to
arbitrary elements by replacing the term “triangular coordinates™ by the more general one “natural
coordinates.” This generalization is illustrated in Figure 16.3.

Geometry

l.x, ¥
.

Shape
Natural :
: functions
coordinates O NG,
i

\ Displacement

interpolation
Uy, u}'

FIGURE 16.3. Isoparametric representation of arbitrary two-dimensional
elements: triangles or quadrilaterals. For 3D elements, expand the geometry
listto {1, x, y, z} and the displacements to {u,, u,, u-}.
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16-5 §16.4 TRIANGULAR ELEMENTS

Under this generalization, natural coordinates (triangular coordinates for triangles, quadrilateral
coordinates for quadrilaterals) appear as parameters that define the shape functions. The shape
functions connect the geometry with the displacements.

Remark 16.1. The terms isoparametric and superparametric were introduced by Irons and coworkers at
Swansea in 1966. See Notes and Bibliography at the end of this Chapter. There are also subparametric
elements whose geometry is more refined than the displacement expansion.

§16.3. General Isoparametric Formulation

The generalization of (16.3) to an arbitrary two-dimensional element with 7 nodes is straightforward.
Two set of relations, one for the element geometry and the other for the element displacements, are
required. Both sets exhibit the same interpolation in terms of the shape functions.

Geometric relations:

n n n
1= N/, x=)Y xiN, y=)Y yN. (16.4)
i=1 i=1 i=1
Displacement interpolation:
n n
", = Zux,-Nf, u, = Z 1 NE. (16.5)
i=1 i=1
These two sets of equations may be combined in matrix form as
L L N¢-
1 1 1 1 |
X X)Xy : N;
y oY v || (16.6)
Ux Uy Uy Uyn
Uy - —uyl uy2 uyn.— _N}f_

The first three scalar equations in (16.6) express the geometry definition, and the last two the
displacement expansion. Note that additional rows may be added to this matrix expression if more
variables are interpolated by the same shape functions. For example, suppose that the thickness 4
and a temperature field 7" are both interpolated from the » node values:

~ 1 ] ! 1 I 7 P
5 X, X, X, N}‘f
Yy M1 B Yn 2
U U, Uy, Uy, (16.7)
Uy uyl uyZ uyn
h hl hz h, | N |
L7l L1, T, T, 1 "

Note that the column of shape functions does not change.

To illustrate the use of the isoparametric concept, we take a look at specific 2D isoparametric
elements that are commonly used in structural and non-structural applications. These are separated
into triangles and quadrilaterals because different natural coordinates are used.

16-5
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Chapter 16: THE ISOPARAMETRIC REPRESENTATION 16—6

§16.4. Triangular Elements

§16.4.1. The Linear Triangle

. . . g 3
The three-noded linear triangle, studied in Chapter 15 and
pictured in Figure 16.4, may be presented as an isoparametric
element:
17 B! 1 1 ] 5
X X Xy, X4 Ny
yl=[n »n » [NE] (16.8) :
Ux Uyp Uxy Uys f
LUy LUy Uy Uz FIGURE 16.4. The 3-node linear triangle.
The shape functions are simply the triangular coordinates:
N=t, N=tr, N=¢ (16.9)

The linear triangle is the only triangular element that is both superparametric and isoparametric.

§16.4.2. The Quadratic Triangle

The six node triangle shown in Figure 16.5 is the next (b) 3
complete-polynomial member of the isoparametric
triangle family. The isoparametric definition is .
e - 6
e -111111-%'3
2 ¢
Y 1=\ N ¥ Y3 Yo Vs Ve Ny 1
Ux Uy Uyy Uys Uy Uys Uyg N;’
Uy, LUy Uy Uyz Uy Uys Uye d | e F1GURE 16.5. The 6-node quadratic triangle:
' ' ' ' ' |6 ] (a) the superparametric version, with straight
(16.10) sides and midside nodes at midpoints; (b) the
isoparametric version.
The shape functions are
Ny =0Qa -1, N =0Q2p-1), N =025-1), (16.11)

Ni =485, N5 =488, Ng =4818.

The element may have parabolically curved sides defined by the location of the midnodes 4, 5 and 6.
The triangular coordinates for a curved triangle are no longer straight lines, but form a curvilinear
system as can be observed in Figure 16.5(b).

§16.4.3. *The Cubic Triangle

The cubic triangle has ten nodes. This shape functions of this element are the subject of an Exercise in Chapter
18. The implementation is studied in Chapter 24.
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205



Médulo 6 - Simulacidén Formulacion Implementacion MEF - v.2016.1 - Prof. Dr. José L Oliver

16-7 §16.5 QUADRILATERAL ELEMENTS

§16.5. Quadrilateral Elements

§16.5.1. Quadrilateral Coordinates and Iso-P Mappings

Before presenting examples of quadrilateral

elements, we must introduce the appropriate :

natural coordinate system for that geometry. 1=

The natural coordinates for a triangular Z:‘:_IF il
element are the triangular coordinates ¢, i}

{» and ¢3. The natural coordinates for a t
quadrilateral element are & and n, which are
illustrated in Figure 16.6 for both straight n=-1
sided and curved side quadrilaterals. These
are called quadrilateral coordinates.

FIGURE 16.6. Quadrilateral coordinates.

These coordinates vary from —1 on one side to +1 at the other, taking the value zero over the
quadrilateral medians. This particular variation range (instead of taking, say, 0 to 1) was chosen by
[rons and coworkers to facilitate use of the standard Gauss integration formulas. Those formulas
are discussed in the next Chapter.

Remark 16.2. In some FEM derivations it is convenient to visualize the quadrilateral coordinates plotted as
Cartesian coordinates in the {&, n} plane. This is called the reference plane. All quadrilateral elements in the
reference plane become a square of side 2, called the reference element, which extends over & € [—1, 1], n €
[—1, 1]. The transformation between {&, n} and {x, y} dictated by the second and third equations of (16.4),
is called the isoparametric mapping. A similar version exists for triangles. An important application of this
mapping is discussed in §16.6; see Figure 16.9 there.

§16.5.2. The Bilinear Quadrilateral

The four-node quadrilateral shown in Figure 16.7 is the

simplest member of the quadrilateral family. It is defined by =1
17 -1 1 1 1 7 Ne
* *y X Xy My Nfe
Y (=X Yo V3 V4 Njf . (16.12)
Ux Uyl Uxy Uyz Uy e
Luy 1 Luyy uy uy gy, Ny FIGURE 16.7. The 4-node

bilinear quadrilateral.

The shape functions are

Ny =11-=8&0—-n), N =11+&A-n),

| | (16.13)
N =la+ea+n, N =1la-&a+n.

These functions vary linearly on quadrilateral coordinate lines & = const and n = const, but are
not linear polynomials as in the case of the three-node triangle.

16-7
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(b) \“ 3
4 m=1Y
6
&=-1 =1
1 n=-1 5

F1GURE 16.8. Two widely used higher order quadrilaterals: (a) the nine-node biquadratic
quadrilateral; (b) the eight-node “serendipity” quadrilateral.

§16.5.3. The Biquadratic Quadrilateral

The nine-node quadrilateral shown in Figure 16.8(a) is the next complete member of the quadrilateral
family. It has eight external nodes and one internal node. It is defined by

— € —
-197 r1 1 1 1 1 1 1 1 1°9[M
Neé
X xl x2 x3 x4 x5 x6 x7 xg x9 2
yIl=I|i» » » v ¥s Yo Y1 Vs Yo . (16.14)
Ux uxl ux2 ux3 ux4 uxS ux6 ux? uxS ux9

This element is often referred to as the Lagrangian quadrilateral in the FEM literature, a term
explained in the Notes and Bibliography. Its shape functions are

N = (1=&(A—nEn, NE=—3(1—EH(1 —nn,
N$ = -1 460 =nEn, Ne= La4+e)0-nHe, N=1-6)1-1n> (16.15)

These functions vary quadratically along the coordinate lines & = const and n = const. The shape
function associated with the internal node 9 is called a bubble function because of its geometric
shape, which is pictured in §18.4.2.

Figure 16.8(a) depicts a widely used eight-node variant called the “serendipity” quadrilateral. (A
name that originated from circumstances surrounding the element discovery.) The internal node is
eliminated by kinematic constraints as worked out in an Exercise of Chapter 18.

§16.6. Completeness Properties of Iso-P Elements

Some general conclusions as regards the range of applications of isoparametric elements can be
obtained from a completeness analysis. More specifically, whether the general prescription (16.6)
that combines (16.4) and (16.5) satisfies the completeness criterion of finite element trial expansions.
This 1s one of the conditions for convergence to the analytical solution. The requirement is treated
generally in Chapter 19, and is stated here in recipe form.

16-8
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16-9 §16.6 COMPLETENESS PROPERTIES OF ISO-P ELEMENTS
§16.6.1. *Completeness Analysis

The plane stress problem has variational index m = 1. A set of shape functions is complete for this problem
if they can represent exactly any /inear displacement motions such as

Uy = oo + 01X + a2y, u, = Bo + B1x + poy. (16.16)
To carry out the check, evaluate (16.16) at the nodes
u,, = oo+ o1x; +ary; u, = po+ Bixi + Bayi, 1= 1; wan s (16.17)

Insert this into the displacement expansion (16.5) to see whether the linear displacement field (16.16) is
recovered. Here are the computations for the displacement component , :

7

Uy, = Zl (g + a1 x; +az2yi) N = a ZN;) + o foNf + o Zy,Nf =ao+aix +ary. (16.18)

For the last step we have used the geometry definition relations (16.4), reproduced here for convenience:

lziNf, xzilx,Nf, yzi:y,Nf. (16.19)

A similar calculation may be made for u,. It appears that the isoparametric displacement expansion represents
(16.18) for any element, and consequently meets the completeness requirement for variational order m = 1.
The derivation carries without essential change to three dimensions.!

Can you detect a flaw in this conclusion? The fly in the ointment is the last replacement step of (16.18),
which assumes that the geometry relations (16.19) are identically satisfied. Indeed they are for all the example
elements presented in the previous sections. But if the new shape functions are constructed directly by the
methods of Chapter 18, a posteriori checks of those identities are necessary.

§16.6.2. Completeness Checks

The first check in (16.19) is easy: the sum of shape functions must be unity. This is also called the
unit sum condition. It can be easily verified by hand for simple elements. Here are two examples.

Example 16.1. Check for the linear triangle: directly from the definition of triangular coordinates,

N+N;,+N; =1+ +6=1. (16.20)

' This derivation is due to B. M. Irons. See for example [145, p. 75]. The property was known since the mid 1960s and
contributed substantially to the rapid acceptance of iso-P elements.

16-9
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x—y plane

& plane good mapping bad mapping
-— Oo—0 (compatible) (incompatible)

FIGURE 16.9. Good and bad isoparametric mappings of 4-node quadrilateral
from the {&, n} reference plane onto the {x, y} physical plane.

Example 16.2. Check for the 4-node bilinear quadrilateral:

Nf+N;+N{+N; =3(1—-E—n+&n)+;(1+&—n—&n) (16.21)

For more complicated elements see Exercises 16.2 and 16.3.

The other two checks are less obvious. For specificity consider the 4-node bilinear quadrilateral.
The geometry definition equations are

4 4
x=) xN/GEm, y=) nNEn. (16.22)
i=1 i=1

Given the corner coordinates, {x;, y;} and a point P(x, y) one can try to solve for {&, n}. This
solution requires nontrivial work because it involves two coupled quadratics, but can be done.
Reinserting into (16.22) simply gives back x and y, and nothing is gained.?

The correct question to pose is: is the correct geometry of the quadrilateral preserved by the
mapping from {&, n} to {x, y}? In particular, are the sides straight lines? Figure 16.9 illustrate
these questions. Two side-two squares: (el) and (e2), contiguous in the {&, n} reference plane, are
mapped to quadrilaterals (e1) and (e2) in the {x, y} physical plane through (16.22). The common
side 1-2 must remain a straight line to preclude interelement gaps or interpenetration.

We are therefore lead to consider geometric compatibility upon mapping. But this is equivalent to the
question of interelement displacement compatibility, which is stipulated as item (C) in §18.1. The
statement “the displacement along a side must be uniquely determined by nodal displacements on
that side™ translates to “the coordinates of a side must be uniquely determined by nodal coordinates
on that side.” Summarizing:

2 This tautology is actually a blessing, since finding explicit expressions for the natural coordinates in terms of x and y
rapidly becomes impossible for higher order elements. See, for example, the complications that already arise for the
bilinear quadrilateral in §23.3.

16-10
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16-11 §16. References

Unit-sum condition + interelement compatibility — completeness. (16.23)

This subdivision of work significantly reduces the labor involved in element testing.

§16.6.3. *Completeness for Higher Variational Index

The completeness conditions for variational index 2 are far more demanding because they involve quadratic
motions. No simple isoparametric configurations satisfy those conditions. Consequently isoparametric for-
mulations have limited importance in the finite element analysis of plate and shell bending.

§16.7. Iso-P Elements in One and Three Dimensions

The reader should not think that the concept of isoparametric representation is confined to two-
dimensional elements. It applies without conceptual changes to one and three dimensions as long as
the variational index remains one.> Three-dimensional solid elements are covered in an advanced

course. The use of the isoparametric formulation to construct a 3-node bar element is the topic of
Exercises 16.4 through 16.7.

Notes and Bibliography
A detailed presentation of the isoparametric concept, with annotated references to the original 1960 papers
may be found in the textbook [145].

This matrix representation for isoparametric elements used here was introduced in [66].

The term Lagrangian element in the mathematical FEM literature identifies quadrilateral and hexahedra (brick)
elements that include all polynomial terms £'n/ (in 2D) or €'/ ¥ (in 3D) withi < n, j < nand k < n,
as part of the shape function interpolation. Such elements have (# + 1) nodes in 2D and (# + 1)° nodes in
3D, and the interpolation is said to be n-bicomplete. For example, if n = 2, the biquadratic quadrilateral with
(2 + 1)> = 9 nodes is Lagrangian and 2-bicomplete. (The qualifier “Lagrangian” in this context refers to
Lagrange’s interpolation formula, not to Lagrange multipliers.)

References

Referenced items have been moved to Appendix R

3 A limitation explained in §16.6.3.

16-11
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Homework Exercises for Chapter 16

The Isoparametric Representation

EXERCISE 16.1 [D:10] Whatis the physical interpretation of the shape-function unit-sum condition discussed
in §16.67 Hint: the element must respond exactly in terms of displacements to rigid-body translations in the
x and y directions.

EXERCISE 16.2 [A:15] Check by algebra that the sum of the shape functions for the six-node quadratic
triangle (16.11) is exactly one regardless of natural coordinates values. Hint: show that the sum is expressable

as 257 — S, where Sy = &1 + & + &5

EXERCISE 16.3 [A/C:15] Complete the table of shape functions (16.23) of the nine-node biquadratic quadri-
lateral. Verify that their sum is exactly one.

EXERCISE 16.4 [A:20] Consider a three-node bar element referred to the natural coordinate £. The two end
nodes and the midnode are identified as 1, 2 and 3, respectively. The natural coordinates of nodes 1, 2 and 3
are £ = —1,& = 1 and & = 0, respectively. The variation of the shape functions N; (&), N>(&) and N3(§) is
sketched in Figure E16.1. These functions must be quadratic polynomials in &:

NYE) = ao + a1 +aE?,  NYE) = bo+ biE +byE%,  NiE) =co+ 1€ + (E16.1)
;\\ Ny (©) N, (©) / 1 /ﬁ] mﬁfi%g
- 3 3
1 B 02 lo———— 3 2 14 n2
=1 E=0 21 =1 =0 E=1 %=—1 =0 E=1

FI1GURE E16.1. Isoparametric shape functions for 3-node bar element (sketch). Node 3 has been
drawn at the 1-2 midpoint but it may be moved away from it, as in Exercises E16.5 and E16.6.

Determine the coefficients ay, through ¢, using the node value conditions depicted in Figure E16.1; for example
Ny =1,0and 0 for§ = —1,0 and 1 at nodes 1, 3 and 2, respectively. Proceeding this way show that

Ni(g)=—-16(1-§), Nj¢E)=3:0+8&), N@E=1-¢ (E16.2)
Verity that their sum is identically one.

EXERCISE 16.5

[A/C:15+10+15+5] A 3-node straight bar element is defined by 3 nodes: 1, 2 and 3, with axial coordinates
x1, x and x3, respectively, as illustrated in Figure E16.2. The element has axial rigidity £A4 and length
¢ = x, — x;. The axial displacement is u(x). The 3 degrees of freedom are the axial node displacements u,
u> and u3. The isoparametric definition of the element is

] ] 1 ] NY
x|=|x1 x» x3 N; |, (E16.3)
u Uy Uz U3 N3

in which N¢ (&) are the shape functions (E16.2) of the previous Exercise. Node 3 lies between 1 and 2 but is
not necessarily at the midpoint x = %E. For convenience define

x; =0, x; =4, X3 = (3 +a)t, (E16.4)
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axial rigidity E4
—_— s X, U

1(&=-1) 3(6=0) 2(&=D

x;=0 x3=L2+0l  xp=14¢

f—— =LY —

FIGURE E16.2. The 3-node bar element in its local system

where —% <o < % characterizes the location of node 3 with respect to the element center. If @ = 0 node 3
is located at the midpoint between 1 and 2. See Figure E16.2.

(a) From (E16.4) and the second equation of (E16.3) get the Jacobian J = dx/d& in terms of ¢, « and &.
Show that: (i) if—i <a< i then J > 0 over the whole element —1 < & < 1;(ii)ifa =0, J = £/2
is constant over the element.

(b) Obtain the 1 x 3 strain-displacement matrix B relating ¢ = du/dx = Bu®, where u® is the column
3-vector of node displacements u,, #, and u3. The entries of B are functions of £, & and &. Hint:
B = dN/dx = J7'dN/d&, where N = [ N; N> N3] and J comes from item (a).

(¢) Show that the element stiffness matrix is given by

£ 1
K":/ EABTdezf EAB'BJdE. (E16.5)
0 -1

Evaluate the rightmost integral for arbitrary « but constant £ 4 using the 2-point Gauss quadrature rule
(E13.7). Specialize the result to « = 0, for which you should get K|y = K» = TEA/(3¢), K33 =
16EA/(3¢), K1 = EA/(3¢) and K3 = K3 = —8E A/(3¢), with eigenvalues {8EA/¢,2EA/¢, 0}.
Note: use of a CAS is recommended for this item to save time.

(d) What is the minimum number of Gauss points needed to integrate K® exactly if « = 0?
EXERCISE 16.6 [A/C:20] This Exercise is a continuation of the foregoing one, and addresses the question of

why K° was computed by numerical integration in item (¢). Why not use exact integration? The answer is that
the exact stiffness for arbitrary « is numerically useless. To see why, try the following script in Mathematica:

ClearAll[EA,L,alpha,xi]; (* Define J and B={{B1,B2,B3}} here *)

Ke=Simplify[Integrate[EA*Transpose[B] .B*J,{xi,-1,1},
Assumptions->alpha>0&&alpha<1/4&&EA>0&&L>0]] ;

Print["exact Ke=",Ke//MatrixForm];

Print["exact Ke for alpha=0",Simplify[Ke/.alpha->0]//MatrixForm];

Keseries=Normal [Series[Ke,{alpha,0,2}]1];

Print["Ke series about alpha=0:",Keseries//MatrixForm];

Print["Ke for alpha=0",Simplify[Keseries/.alpha->0]//MatrixForm];

At the start of this script define J and B with the results of items (a) and (b), respectively. Then run the script.
The line Print ["exact Ke for alpha=0",Simplify[Ke/.alpha->0]//MatrixForm] will trigger er-
ror messages. Comment on why the exact stiffness cannot be evaluated directly at @ = 0 (look at the printed
expression before this one). A Taylor series expansion about « = 0 circumvents these difficulties but the
2-point Gauss integration rule gives the correct answer without the gyrations.

16-13

212



Médulo 6 - Simulacidén Formulacion Implementacion MEF - v.2016.1 - Prof. Dr. José L Oliver

Chapter 16: THE ISOPARAMETRIC REPRESENTATION 16-14
&=€ &=Cr
il L load ¢ i

- m— — — —- —
— e U

1(&=-1) 3(&=0) 2(=D)

x1=0 xy3= L1210l xp=4

e—— =119 —

F1GURE E16.3. The 3-node bar element under a “box™ axial load ¢.

EXERCISE 16.7 [A/C:20] Construct the consistent force vector for the 3-node bar element of the foregoing
exercise, if the bar is loaded by a uniform axial force ¢ (given per unit of x length) that extends from & = &;
through & = &g, and is zero otherwise. Here —1 < &, < &, < 1. See Figure E16.3. Use

&R
f :[ g N' Jde, (E16.6)
—&r
with the J = dx /d& found in Exercise 16.5(a) and analytical integration. The answer is quite complicated
and nearly hopeless by hand. Specialize the resulttoa =0,&;, = —1 and &; = 1.
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