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3.2. Mallado, Cargas y Condiciones de Contorno.

En esta seccidn se proporcionan algunas breves y sencillas recomendaciones sobre el uso de
los programas comerciales de elementos finitos. Seguidamente se indica de forma genérica,
dependiendo de la forma geométrica del modelo que se pretende analizar, en qué lugares los
elementos deberian ser mas pequenos. Se comenta que los elementos que se utilicen tienen
que tener una relacidon de aspecto adecuada, debiéndose evitar el uso de elementos
distorsionados. Se indica que si no se controla con cuidado la generacidn de la malla con
estos programas, es muy habitual que aparezcan elementos distorsionados. Para orientar
sobre el uso de los distintos tipos de elementos, se indica segun la forma geométrica del
elemento, cuales son mas recomendables, si es posible utilizarlos. Con el fin de insistir
sobre el tema de la aplicacidn de las cargas, se comentan dos procedimientos inmediatos de
conversion de cargas distribuidas a cargas nodales equivalentes: el método NODO a NODO; vy
el ELEMENTO a ELEMENTO. Seguidamente se procede a tratar el tema de las condiciones de
contorno. Se distingue entre condiciones de contorno ESENCIALES y NATURALES. Se insiste
especialmente en lo que se denomina “supresidon de modos de cuerpo rigido”, tanto en
problemas bidimensionales como en problemas tridimensionales, proporcionando ejemplos. Con
el fin de simplificar los modelos de elementos finitos que se utilicen se comenta 1la
posibilidad de aprovechar 1las simetrias y antisimétrias que existan, indicando como
definir las condiciones de contorno y las cargas en cada caso. Se comentan las que se
denominan: simetria reflexiva, simetria rotacional, simetria dihedrica, y simetria
translacional, asi como la axisimetria.

Por ello facilitamos completo el Tema 8 del Curso Introductorio al Método de los Elementos
Finitos que se explica en le Universidad de Colorado en Boulder, bajo la direccidn del
Prof. Carlos A. Felippa.

CHAPTER 8. Simulacion por el MEF: Introduccion, Cargas y Condiciones de Contorno.
Carlos A. Felippa.

Al final del capitulo se proponen como ejercicios los siguientes: (1) Dado un modelo
geométrico bidimensional, en el que estdn indicadas las condiciones de carga y los apoyos
o condiciones de contorno, se trata de indicar en qué lugares sera necesario utilizar una
malla de elementos finitos mas densa y porque razén; (2) Dada una malla de elementos
definida en un modelo bidimensional, en el que existe una zona de transicidén sin mallar,
se trata de proponer posibles mallas para esa zona, de tal forma que sea coherente; (3)
dada una distribucidén lineal de carga, en un modelo de elementos finitos de un problema
bidimensional, definido en base a cuadrilateros de cuatro nodos, se trata de calcular las
cargas nodales equivalentes mediante los dos procedimientos comentados; (4) dados varios
problemas bidimensionales, en los que se proporciona la forma geométrica del mismo, y las
cargas aplicadas, se trata de identificar 1las 1lineas de simetria y antisimetria que
existen, si es posible o no aprovechar su existencia para reducir el tamano del problema a
mallar, y de proponer una posible malla para cada caso, indicando las condiciones de
contorno y las cargas que se deberian considerar para resolver cada problema
adecuadamente.
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83 §8.2 GUIDELINES ON ELEMENT LAYOUT

This Chapter continues the exposition of finite element modeling principles. After some general rec-
ommendations, it provides guidelines on layout of finite element meshes, conversion of distributed
loads to node forces, and how to handle the simplest forms of support boundary conditions. The
following Chapters deal with more complicated forms of boundary conditions called multifreedom
constraints.

The presentation 1s “recipe oriented” and illustrated by specific examples. All examples are from
structural mechanics; most of them are two-dimensional. No attempt is given at a rigorous justi-
fication of rules and recommendations, because that would require mathematical tools beyond the
scope of this course.

§8.1. GENERAL RECOMMENDATIONS

The general rules that should guide you in the use of commercial or public FEM packages, are:

o  Use the simplest type of finite element that will do the job.

o Never, never, never mess around with complicated or special elements, unless you
are absolutely sure of what you are doing.

o  Use the coarsest mesh you think will capture the dominant physical behavior of the
physical system, particularly in design applications.

Three word summary: keep it simple. Initial FE models may have to be substantially revised to
accommodate design changes, and there 1s little point in using complicated models that will not
survive design iterations. The time for refined models 1s when the design has stabilized and you have
a better view picture of the underlying physics, possibly reinforced by experiments or observation.

§8.2. GUIDELINES ON ELEMENT LAYOUT

The following guidelines are stated for structural applications. As noted above, they will be often
illustrated for two-dimensional meshes of continuum elements for ease of visualization.

§8.2.1. Mesh Refinement

Use a relatively fine (coarse) discretization in regions where you expect a high (low) gradient of

strains and/or stresses. Regions to watch out for high gradients are:

e Near entrant corners, or sharply curved edges.

e In the vicinity of concentrated (point) loads, concentrated reactions, cracks and cutouts.

e In the interior of structures with abrupt changes in thickness, material properties or cross
sectional areas.

The examples 1n Figure 8.1 illustrate some of these “danger regions.” Away from such regions one
can use a fairly coarse discretization within constraints imposed by the need of representing the
structural geometry, loading and support conditions reasonably well.
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Figure 8.1. Some situations where a locally refined finite element
discretization (in the red-colored areas) is recommended.
§8.2.2. Element Aspect Ratios Good Baid

When discretizing two and three dimensional problems,
try to avoid finite elements of high aspect ratios: elon-
gated or “skinny” elements, such as the ones illustrated

on the right of Figure 8.2. (The aspect ratio of a two- or
three-dimensional element 1s the ratio between its largest

//'—-\

and smallest dimension.)

As arough guideline, elements with aspect ratios exceed-
ing 3 should be viewed with caution and those exceed-
ing 10 with alarm. Such elements will not necessarily
produce bad results — that depends on the loading and

—

boundary conditions of the problem — but do introduce Figure 8.2. Elements with good
the potential for trouble. and bad aspect ratios.
REMARK 8.1

In many “thin” structures modeled as continuous bodies the appearance of “skinny” elements is inevitable on
account of computational economy reasons. An example is provided by the three-dimensional modeling of
layered composites in aerospace and mechanical engineering problems.

§8.2.3. Physical Interfaces

A physical interface, resulting from example from a change in material, should also be an interele-
ment boundary. That 1s, elements must not cross interfaces. See Figure 8.3.
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Physical interface

Figure 8.3. llustration of the rule that elements should
not cross material interfaces.

§8.2.4. Preferred Shapes

In two-dimensional FE modeling, if you have a choice between triangles and quadrilaterals with
similar nodal arrangement, prefer quadrilaterals. Triangles are quite convenient for mesh generation,
mesh transitions, rounding up corners, and the like. But sometimes triangles can be avoided
altogether with some thought. One of the homework exercises 1s oriented along these lines.

In three dimensional FE modeling, prefer strongly bricks over wedges, and wedges over tetrahedra.
The latter should be used only if there is no viable alternative.! The main problem with tetrahedra
and wedges is that they can produce wrong stress results even if the displacement solution looks
reasonable.

§8.3. DIRECT LUMPING OF DISTRIBUTED LOADS

In practical structural problems, distributed loads are more common than concentrated (point)
loads.? Distributed loads may be of surface or volume type.

Distributed surface loads (called surface tractions in continuum mechanics) are associated with
actions such as wind or water pressure, lift in airplanes, live loads on bridges, and the like. They
are measured in force per unit area.

Volume loads (called body forces in continuum mechanics) are associated with own weight (gravity),
inertial, centrifugal, thermal, prestress or electromagnetic effects. They are measured in force per
unit volume.

A derived type: line loads, result from the integration of surface loads along one transverse direction,
or of volume loads along two transverse directions. Line loads are measured in force per unit length.

Whatever their nature or source, distributed loads must be converted to consistent nodal forces
for FEM analysis. These forces eventually end up in the right-hand side of the master stiffness
equations.

The meaning of “consistent” can be made precise through variational arguments, by requiring that
the distributed loads and the nodal forces produce the same external work. Since this requires

I Unfortunately, many existing space-filling automatic mesh generators in three dimensions produce tetrahedral meshes.
There are generators that try to produce bricks, but these often fail in geometrically complicated regions.

2 In fact, one of the objectives of a good structural design is to avoid or alleviate stress concentrations produced by
concentrated forces.
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Figure 8.4. NbN direct lumping of distributed load, illustrated for a 2D problem.

the introduction of external work functionals, the topic is deferred to Part II. However, a simpler
approach called direct load lumping, or simply load lumping, 1s often used by structural engineers
in lieu of the more mathematically impeccable but complicated variational approach. Two variants
of this technique are described below for distributed surface loads.

§8.3.1. Node by Node (NbN) Lumping

The node by node (NbN) lumping method 1s graphically explained in Figure 8.4. This example
shows a distributed surface loading acting normal to the straight boundary of a two-dimensional
FE mesh. (The load 1s assumed to have been integrated through the thickness normal to the figure,
so it 1s actually a line load measured as force per unit length.)

The procedure is also called tributary region or contributing region method. For the example of
Figure 8.4, each boundary node is assigned a tributary region around it that extends halfway to the
adjacent nodes. The force contribution P of the cross-hatched area is directly assigned to node 3.

This method has the advantage of not requiring the computation of centroids, as required in the
EbE technique discussed in the next subsection. For this reason it is often preferred in hand
computations. It can be extended to three-dimensional meshes as well as volume loads.? It should
be avoided, however, when the applied forces vary rapidly (within element length scales) or act
only over portions of the tributary regions.

§8.3.2. Element by Element (EbE) Lumping

In this variant the distributed loads are divided over element domains. The resultant load 1s assigned
to the centroid of the load diagram, and apportioned to the element nodes by statics. A node force

3 The computation of tributary areas and volumes can be done through the so-called Voronoi diagrams. This is an advanced
topic in computational geometry and thus not treatede here.
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Figure 8.5. EbE direct lumping of distributed load, illustrated for a 2D problem.

is obtained by adding the contributions from all elements meeting at that node. The procedure 1s
illustrated in Figure 8.5, which shows details of the computation over segment 2-3. The total force
at node 3, for instance, would be that contributed by segments 2-3 and 3-4.

If applicable, the EbE procedure 1s more accurate than NbN lumping. In fact it agrees with the
consistent node lumping for simple elements that possess only corner nodes. In those cases it 1s
not affected by the sharpness of the load variation and can be even used for point loads that are not
applied at the nodes.

The procedure is not applicable if the centroidal resultant load cannot be apportioned by statics.
This happens if the element has midside faces or internal nodes in addition to corner nodes, or if
it has rotational degrees of freedom. For those elements the variational-based consistent approach
covered in Part II 1s preferable.

§8.4. BOUNDARY CONDITIONS

The key distinction between essential and natural boundary conditions (BC) was introduced in
the previous Chapter. The distinction is explained in Part IT from a variational standpoint. In this
Chapter we discuss next the simplest essential boundary conditions in structural mechanics from
a physical standpoint. This makes them relevant to problems with which a structural engineer is
familiar. Because of the informal setting, the ensuing discussion relies heavily on examples.

In structural problems formulated by the DSM, the recipe of §7.7.1 that distinguishes between
essential and natural BC is: i1f it directly involves the nodal freedoms, such as displacements or
rotations, 1t 1s essential. Otherwise it is natural. Conditions involving applied loads are natural.
Essential BCs take precedence over natural BCs.

The simplest essential boundary conditions are support and symmetry conditions. These appear
in many practical problems. More exotic types, such as multifreedom constraints, require more

8-7
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Figure 8.6. Examples of restraining a body against two-dimensional rigid body motions.

advanced mathematical tools and are covered in the next two Chapters.

§8.5. SUPPORT CONDITIONS

Supports are used to restrain structures against relative rigid body motions. This s done by attaching
them to Earth ground (through foundations, anchors or similar devices), or to a “ground structure”
which is viewed as the external environment.® The resulting boundary conditions are often called
motion constraints. In what follows we analyze two- and three-dimensional motions separately.

§8.5.1. Supporting Two Dimensional Bodies

Figure 8.6 shows two-dimensional bodies that displace in the plane of the paper. If a body 1s not re-
strained, an applied load will cause infinite displacements. Regardless of the loading conditions, the
structure must be restrained against two translations and one rotation. Consequently the minimum
number of constraints that has to be imposed in two dimensions is tree.

In Figure 8.6, support A provides translational restraint, whereas support B, together with A,
provides rotational restraint. In finite element terminology, we say that we delete (fix, remove,
preclude) all translational displacements at point A, and that we delete the translational degree of
freedom directed along the normal to the AB direction at point B. This body 1s free to distort in any
manner without the supports imposing any displacement constraints.

Engineers call A and B reaction-to-ground points. This means that if the supports are conceptually
removed, the applied loads are automatically balanced by reactive forces at points A and B, in
accordance with Newton’s third law. Additional freedoms may be removed to model greater restraint
by the environment. However, Figure 8.6(a) does illustrate the minimal number of constraints.

Figure 8.6(b) shows a simplified version of Figure 8.6(a). Here the line AB is parallel to the global
y axis. We simply delete the x and y translations at point A, and the x translation at point B. If the
roller support at B 1s modified as in 8.6(c), it becomes ineffective in constraining the infinitesimal
rotational motion about point A because the rolling direction is normal to AB. The configuration
of 8.6(¢c) 1s called a kinematic mechanism, and will be flagged by a singular modified stiffness
matrix.

4 For example, the engine of a car is attached to the vehicle frame through mounts. The car frame becomes the “ground
structure,” which moves with respect to Earth ground.

8-8
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§8.5.2. Supporting Three Dimensional Bodies "

Figure 8.7 illustrates the extension of the freedom dele- 7
tion concept to three dimensions. The minimal num-

ber of freedoms that have to be deleted 1s now six and

many combinations are possible. In the example of

Figure 8.7, all three degrees of freedom at point 4 have

been deleted to prevent rigid body translations. The x
displacement component at point B is deleted to pre- z / S
vent rotation about z, the z component is deleted at point

C to prevent rotation about y, and the y component is Figored 7, Suppressingigid body mofions
deleted at point D to prevent rotation about x. in a three-dimensional body.

§8.6. SYMMETRY AND ANTISYMMETRY CONDITIONS

Engineers doing finite element analysis should be on the lookout for conditions of symmetry or
antisymmetry. Judicious use of these conditions allows only a portion of the structure to be analyzed,
with a consequent saving in data preparation and computer processing time.’

i Symmetry 'ﬁ Antisymmetry
(a) Ly line (b) :fpi\/line

loads

displacement
vectors

Figure 8.8. Visualizing symmetry and antisymmetry lines.

§8.6.1. Visualization

Recognition of symmetry and antisymmetry conditions can be done by either visualization of the
displacement field, or by imagining certain rotational ot reflection motions. Both techniques are
illustrated for the two-dimensional case.

A symmetry line in two-dimensional motion can be recognized by remembering the “mirror” dis-
placement pattern shown in Figure 8.8(a). Alternatively, a 180° rotation of the body about the
symmetry line reproduces exactly the original problem.

3 Even if the conditions are not explicitly applied through BCs, they provide valuable checks on the computed solution.
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(b)

Figure 8.9. A doubly symmetric structure under symmetric loading.
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Figure 8.10. A doubly symmetric structure under antisymmetric loading.
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An antisymmetry line can be recognized by the displacement pattern illustrated in Figure 8.8(b).
Alternatively, a 180° rotation of the body about the antisymmetry line reproduces exactly the original
problem except that all applied loads are reversed.

Similar recognition patterns can be drawn in three dimensions to help visualization of planes of
symmetry or antisymmetry. More complex regular patterns associated with sectorial symmetry
(also called harmonic symmetry) and rofational symmetry can be treated in a similar manner, but
will not be discussed here.

§8.6.2. Effect of Loading Patterns

Although the structure may look symmetric in shape, it must be kept in mind that model reduction
can be used only if the loading conditions are also symmetric or antisymmetric.

Consider the plate structure shown in Figure 8.9(a). This structure is symmetrically loaded on the
x-y plane. Applying the recognition patterns stated above one concludes that the structure is doubly
symmetric in both geometry and loading. It 1s evident that no displacements in the x-direction are
possible for any point on the y-axis, and that no y displacements are possible for points on the x
axis. A finite element model of this structure may look like that shown in Figure 8.9(b).

On the other hand if the loading i1s antisymmetric, as shown in Figure 8.10(a), then the x axis
becomes an antisymmetry line because none of the y = 0 points can move along the x direction.

The boundary conditions to be imposed on the finite element model are also different, as shown in
Figure 8.10(b).

REMARK 8.2

For the antisymmetric loading case, one node point has to be constrained against vertical motion. If there are no
actual physical supports, the choice 1s arbitrary and amounts only to an adjustment on the overall (rigid-body)
vertical motion. In Figure 8.10(b) the center point C has been chosen to be that vertically-constrained node.
But any other node could be selected as well; for example A or D. The important thing is not to overconstrain
the structure by applying more than one y constraint.

Notes and Bibliography

FEM modeling rules in most textbooks are “diffuse” if given at all. As noted in Chapter 7, most authors lack
practical experience and view FEM as a way to solve BVPs of their own choosing. The rule collection at the
start of this Chapter attempts to place key recommendations in one place.

The treatment of BCs tends to be also flaky. A notable exception is Irons and Ahmad [8.1], which is under-
standable since Irons worked in industry (Rolls-Royce Ltd) before moving to academia.

References

[8.1] Irons, B. M., Ahmad, S., Techniques of Finite Elements, Ellis Horwood Ltd, Chichester, UK, 1980.
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Homework Exercises for Chapters 7 and 8

FEM Modeling

EXERCISE 8.1

[D:10] The plate structure shown in Figure ES8.1 is loaded and deforms in the plane of the figure. The applied
load at D and the supports at / and N extend over a fairly narrow area. Give a list of what you think are the
likely “trouble spots” that would require a locally finer finite element mesh to capture high stress gradients.

Identify those spots by its letter and a reason. For example, D: vicinity of point load.

v :

C
A B D L
N M I |,
" ) L

Figure E8.1. Plate structure for Exercise 8.1.

Q

EXERCISE 8.2

[D:15] Part of a two-dimensional FE mesh has been set up as indicated in Figure E8.2. Region ABC D is still
unmeshed. Draw a transition mesh within that region that correctly merges with the regular grids shown, uses
4-node quadrilateral elements (quadrilaterals with comer nodes only), and avoids triangles. Note: There are
several (equally acceptable) solutions.

A B
o O O O O O O 0
O )
< ) { )
O )
e, O Zj: é O O O o)

Figure E8.2. Plate structure for Exercise 8.2.

EXERCISE 8.3

[A:15] Compute the “lumped” nodal forces f1, f>, f3 and f; equivalent to the linearly-varying distributed
surface load g for the finite element layout defined in Figure E8.3. Use both NbN and EbE lumping. For
example, fi = 3g/8 for NbN. Check that f; + f> + f3 + f4 = 6g for both schemes (why?). Note that g is
given as a force per unit of vertical length.
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Figure E8.4. Problems for Exercise 8.4.

EXERCISE 8.4

[D:15] Identify the symmetry and antisymmetry lines in the two-dimensional problems illustrated in Figure
E8.4. They are: (a) a circular disk under two diametrically opposite point forces (the famous “Brazilian test”
for concrete); (b) the same disk under two diametrically opposite force pairs; (¢) a clamped semiannulus under
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Figure E8.5. The hungry bird.

a force pair oriented as shown; (d) a stretched rectangular plate with a central circular hole. Finally (¢) and (f)
are half-planes under concentrated loads.®

Having identified those symmetry/antisymmetry lines, state whether it is possible to cut the complete structure
to one half or one quarter before laying out a finite element mesh. Then draw a coarse FE mesh indicating, with
rollers or fixed supports, which kind of displacement BCs you would specify on the symmetry or antisymmetry
lines. Note: Do all sketches on your paper, not on the printed figures.

EXERCISE 8.5

[D:20] You (a finite element guru) pass away and come back to the next life as an intelligent but hungry bird.
Looking around, you notice a succulent big worm taking a peek at the weather. You grab one end and pull for
dinner; see Figure E8.5.

After a long struggle, however, the worm wins. While hungrily looking for a smaller one your thoughts wonder
to FEM and how the bird extraction process might be modeled so you can pull it out more efficiently. Then
you wake up to face this homework question. Try your hand at the following “worm modeling” points.

(a) The worm is simply modeled as a string of one-dimensional (bar) elements. The “worm axial force™ is
of course constant from the beak B to ground level G, then decreases rapidly because of soil friction
(which varies roughly as plotted in the figure above) and drops to nearly zero over DE. Sketch how a
good “worm-element mesh™ should look like to capture the axial force well.

(b) On the above model, how would you represent boundary conditions, applied forces and friction forces?

(¢) Next you want a more refined anaysis of the worm that distinguishes skin and insides. What type of
finite element model would be appropriate?

(d) (Advanced) Finally, point out what need to be added to the model of (¢) to include the soil as an elastic
medium.

Briefly explain your decisions. Dont write equations.

EXERCISE 8.6

[A/D:20] Explain from kinematics why two antisymmetry lines in 2D cannot cross at a finite point. As a

6 Note that (e) is the famous Flamant’s problem, which is important in the 2D design of foundations of civil structures.
The analytical solution of (e) and (f) may be found, for instance, in Timoshenko-Goodier’s Theory of Elasticity, 2nd
Edition, page 85{f.
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corollary, investigate whether it is possible to have more than one antisymmetry line in a 2D elasticity problem.

EXERCISE 8.7

[A/D:15] Explain from kinematics why a symmetry line and an antisymmetry line must cross at right angles.

EXERCISE 8.8

[A/D:15] A 2D body has n > 1 symmetry lines passing through a point C and spanning an angle 7 /n from
each other. This is called sectorial symmetry if n > 3. Draw a picture for n = 5, say for a car wheel. Explain
why C 1s fixed.

EXERCISE 8.9

[A/D:25, 5 each] A body is in 3D space. The analogs of symmetry and antisymmetry lines are symmetry and
antisymmetry planes, respectively. The former are also called mirror planes.

(a) State the kinematic properties of symmetry and antisymmetric planes, and how they can be identified.
(b) Two symmetry planes intersect. State the kinematic properties of the intersection line.

(¢) A symmetry plane and an antisymmetry plane planes intersect. State the kinematic properties of the
intersection line. Can the angle between the planes be arbitrary?

(d) Cantwo antisymmetry planes intersect?

(¢) Three symmetry planes intersect. State the kinematic properties of the intersection point.

EXERCISE 8.10

[A:25] A 2D problem is called periodic in the x direction if all fields, in particular displacements, repeat upon
moving over a distance a > 0: u,(x +a,y) = u,(x,y) and u,(x +a, y) = u,(x, y). Can this situation be
treated by symmetry and/or antisymmetry lines?

EXERCISE 8.11

[A:25] Extend the previous exercise to antiperiodicity, in which u, (x +a, y) = u,(x, y) and u,(x +a, y) =
—uy (X, y).

EXERCISE 8.12

[A:40] Ifthe world were spatially #-dimensional (meaning it has elliptic metric), how many independent rigid
body modes would a body have? (Prove by induction)
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